Skip to main content

Cardiac Restraint and Support Following Myocardial Infarction

  • Chapter
  • First Online:
Cardiovascular and Cardiac Therapeutic Devices

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 15))

Abstract

Myocardial infarction occurs when blood supply to a region of the myocardium is interrupted or eliminated, leading within seconds to loss of active contraction in the affected region and within minutes to cardiomyocyte death. Unable to contract, the infarct stretches passively each time the heart generates pressure, creating an immediate mechanical disadvantage and, if the infarct is large, triggering a cascade of pathological ventricular remodeling that eventually leads to heart failure. Therefore, a variety of therapies have been explored to mechanically reinforce the infarcted heart in the hopes of improving cardiac function and limiting adverse remodeling. This chapter will discuss two major strategies for mechanical support post-MI: globally restraining one or both ventricles, or locally reinforcing only the infarct area. Several ventricular restraint devices and a variety of local reinforcement approaches are compared and evaluated for their ability to reduce left ventricular remodeling and improve cardiac function following myocardial infarction. A variety of metrics used to quantify cardiac function are discussed, including limitations of frequently used functional indices. Differences in efficacy between synthetic and cell-seeded or tissue engineered patches for local reinforcement are investigated, followed by a brief discussion of the importance of patch material properties. Finally, methods for optimizing the type and degree of reinforcement are presented, including both experimental and computational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger, V.L., Go, A.S., Lloyd-Jones, D.M., et al.: Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 125, e2–e220 (2011). doi:10.1161/CIR.0b013e31823ac046

    Google Scholar 

  2. Bogen, D.K., Rabinowitz, S.A., Needleman, A., et al.: An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ. Res. 47, 728–741 (1980)

    Article  Google Scholar 

  3. Holmes, J.W., Borg, T.K., Covell, J.W.: Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng. 7, 223–253 (2005). doi:10.1146/annurev.bioeng.7.060804.100453

    Article  Google Scholar 

  4. Nieminen, M., Heikkilä, J.: Echoventriculography in acute myocardial infarction. II: monitoring of left ventricular performance. Brit. Heart J. 38, 271–281 (1976)

    Article  Google Scholar 

  5. Bristow, M.R., Ginsburg, R., Minobe, W., et al.: Decreased catecholamine sensitivity and B-adrenergic-receptor density in failing human hearts. New England J. Med. 307, 205–211 (1982)

    Article  Google Scholar 

  6. Thomas, J.A., Marks, B.H.: Plasma norepinephrine in congestive heart failure. Am. J. Cardiol. 41, 233–243 (1978)

    Article  Google Scholar 

  7. Pirzada, F.A., Ekong, E.A., Vokonas, P.S., et al.: Experimental myocardial infarction. XIII. Sequential changes in left ventricular pressure-length relationships in the acute phase. Circulation 53, 970–975 (1976). doi:10.1161/01.CIR.53.6.970

    Article  Google Scholar 

  8. Vokonas, P.S., Pirzada, F.A., Hood, W.B.: Experimental myocardial infarction: XII. Dynamic changes in segmental mechanical behavior of infarcted and non-infarcted myocardium. Am. J. Cardiol. 37, 853–859 (1976)

    Article  Google Scholar 

  9. Birnbaum, Y., Chamoun, A.J., Anzuini, A., et al.: Ventricular free wall rupture following acute myocardial infarction. Coron. Artery Dis. 14, 463–470 (2003). doi:10.1097/01.mca.0000085885.61165.f9

    Article  Google Scholar 

  10. Fishbein, M.C., Maclean, D., Maroko, P.R.: The histopathologic evolution of myocardial infarction. Chest 73, 843–849 (1978). doi:10.1378/chest.73.6.843

    Article  Google Scholar 

  11. Fomovsky, G.M., Holmes, J.W.: Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. A. J. Physiol. Heart Circu. Physiol. 298, H221–H228 (2010). doi:10.1152/ajpheart.00495.2009

    Article  Google Scholar 

  12. Gupta, K.B., Ratcliffe, M.B., Fallert, M.A., et al.: Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89, 2315–2326 (1994)

    Article  Google Scholar 

  13. Holmes, J.W., Nuñez, J.A., Covell, J.W.: Functional implications of myocardial scar structure. Am. J. Physiol. 272 Heart Circ. Physiol. 41, H2123–H2130 (1997)

    Google Scholar 

  14. Fomovsky, G.M., Rouillard, A.D., Holmes, J.W.: Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J. Mol. Cell. Cardiol. 52, 1083–1090 (2012). doi:10.1016/j.yjmcc.2012.02.012

    Article  Google Scholar 

  15. Rouillard, A.D., Holmes, J.W.: Mechanical regulation of fibroblast migration and collagen remodeling in healing myocardial infarcts. J. Physiol. 18, 4585–4602 (2012). doi:10.1113/jphysiol.2012.229484

    Article  Google Scholar 

  16. Jugdutt, B.I., Amy, R.W.M.: Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J. Am. Coll. Cardiol. 7, 91–102 (1986). doi:10.1016/S0735-1097(86)80265-0

    Article  Google Scholar 

  17. Kupper, W., Bleifeld, W., Hanrath, P., et al.: Left ventricular hemodynamics and function in acute myocardial infarction: studies during the acute phase, convalescence and late recovery. Am. J. Cardiol. 40, 900–905 (1977)

    Article  Google Scholar 

  18. Pfeffer, J.M., Pfeffer, M.A., Fletcher, P.J., Braunwald, E.: Progressive ventricular remodeling in rat with myocardial infarction. Am. J. Physiol. 260 Heart Circu. Physiol. 29, H1406–H1414 (1991)

    Google Scholar 

  19. Pfeffer, M., Pfeffer, J., Fishbein, M., et al.: Myocardial infarct size and ventricular function in rats. Circ. Res. 44, 503–512 (1979)

    Article  Google Scholar 

  20. Stone, P.H., Raabe, D.S., Jaffe, A.S.: Prognostic significance of location and type of myocardial infarction: independent adverse outcome associated with anterior location. J. Am. Coll. Cardiol. 11, 453–463 (1988)

    Article  Google Scholar 

  21. Chachques, J.C., Grandjean, P., Schwartz, K., et al.: (1988) Effect of latissimus dorsi dynamic cardiomyoplasty on ventricular function. Circulation 78(5 Pt. 2), 203–216

    Google Scholar 

  22. Lee, K.F., Dignan, R.J., Parmar, J.M., et al.: (1991) Effects of dynamic cardiomyoplasty on left ventricular performance and myocardial mechanics in dilated cardiomyopathy. J. Thorac. Cardiovasc. Surg. 102(1), 124–131

    Google Scholar 

  23. Grandjean, P.A., Austin, L., Chan, S., et al.: Dynamic cardiomyoplasty: clinical follow-up results. J. Cardiac. Surg. 6(1 Suppl), 80–88 (1991)

    Google Scholar 

  24. Oz, M.C., Konertz, W.F., Kleber, F.X., et al.: Global surgical experience with the Acorn cardiac support device. J. Thorac. Cardiovasc. Surg. 126, 983–991 (2003). doi:10.1016/S0022-5223(03)00049-7

    Article  Google Scholar 

  25. Power, J.M., Raman, J., Dornom, A., et al.: Passive ventricular constraint amends the course of heart failure: a study in an ovine model of dilated cardiomyopathy. Cardiovasc. Res. 44, 549–555 (1999)

    Article  Google Scholar 

  26. Chaudhry, P.A., Mishima, T., Sharov, V.G., et al.: Passive epicardial containment prevents ventricular remodeling in heart failure. Ann. Thorac. Surg. 70, 1275–1280 (2000)

    Article  Google Scholar 

  27. Blom, A.S., Mukherjee, R., Pilla, J.J., et al.: Cardiac support device modifies left ventricular geometry and myocardial structure after myocardial infarction. Circulation 112, 1274–1283 (2005). doi:10.1161/CIRCULATIONAHA.104.499202

    Article  Google Scholar 

  28. Blom, A.S., Pilla, J.J., Arkles, J., et al.: Ventricular restraint prevents infarct expansion and improves borderzone function after myocardial infarction: a study using magnetic resonance imaging, three-dimensional surface modeling, and myocardial tagging. Ann. Thorac. Surg. 84, 2004–2010 (2007). doi:10.1016/j.athoracsur.2007.06.062

    Article  Google Scholar 

  29. Pilla, J.J., Blom, A.S., Gorman III, J.H., et al.: Early postinfarction ventricular restraint improves borderzone wall thickening dynamics during remodeling. Ann. Thorac. Surg. 80, 2257–2262 (2005). doi:10.1016/j.athoracsur.2005.05.089

    Article  Google Scholar 

  30. Konertz, W.F., Shapland, J.E., Hotz, H., et al.: Passive containment and reverse remodeling by a novel textile cardiac support device. Circulation 104, I270–I275 (2001). doi:10.1161/hc37t1.094525

    Article  Google Scholar 

  31. Oz, M.C., Konertz, W.F., Raman, J., Kleber, F.X.: Reverse remodeling of the failing ventricle: surgical intervention with the Acorn cardiac support device. Congest. Heart Fail. 10, 96–104 (2004)

    Article  Google Scholar 

  32. Mann, D.L., Acker, M.A., Jessup, M., et al.: Rationale, design, and methods for a pivotal randomized clinical trial for the assessment of a cardiac support device in patients with New York health association class III-IV heart failure. J. Cardiac Fail. 10, 185–192 (2004). doi:10.1016/j.cardfail.2003.10.007

    Article  Google Scholar 

  33. Speziale, G., Nasso, G., Piancone, F., et al.: One-year results after implantation of the CorCap for dilated cardiomyopathy and heart failure. Ann. Thorac. Surg. 91, 1356–1362 (2011). doi:10.1016/j.athoracsur.2011.02.006

    Article  Google Scholar 

  34. Acker, M.A., Jessup, M., Bolling, S.F., et al.: Mitral valve repair in heart failure: five-year follow-up from the mitral valve replacement stratum of the Acorn randomized trial. J. Thorac. Cardiovasc. Surg. 142, 569–574 (2011). doi:10.1016/j.jtcvs.2010.10.051

    Article  Google Scholar 

  35. Mann, D.L., Kubo, S.H., Sabbah, H.N., et al.: Beneficial effects of the CorCap cardiac support device: five-year results from the Acorn trial. J. Thoracic. Cardiovasc. Surg. 143, 1036–1042 (2012). doi:10.1016/j.jtcvs.2011.06.014

    Article  Google Scholar 

  36. Kwon, M.H., Cevasco, M., Schmitto, J.D., Chen, F.Y.: Ventricular restraint therapy for heart failure: a review, summary of state of the art, and future directions. J. Thorac. Cardiovasc. Surg. 144, 771–777 (2012). doi:10.1016/j.jtcvs.2012.06.014

    Article  Google Scholar 

  37. Gummert, J.F., Rahmel, A., Bossert, T., Mohr, F.W.: Socks for the dilated heart: does passive cardiomyoplasty have a role in long-term care for heart failure patients? Zeitschrift für Kardiologie 93, 849–854 (2004). doi:10.1007/s00392-004-0160-7

    Article  Google Scholar 

  38. Klodell, C.T., Aranda, J.M., McGiffin, D.C., et al.: Worldwide surgical experience with the Paracor HeartNet cardiac restraint device. J. Thorac. Cardiovasc. Surg. 135, 188–195 (2008). doi:10.1016/j.jtcvs.2007.09.034

    Article  Google Scholar 

  39. George, I., Cheng, Y., Yi, G.-H., et al.: Effect of passive cardiac containment on ventricular synchrony and cardiac function in awake dogs. Eur. J. Cardio Thorac. Surg 31, 55–64 (2007). doi:10.1016/j.ejcts.2006.09.024

    Article  Google Scholar 

  40. Magovern, J.A., Teekell-Taylor, L., Mankad, S., et al.: Effect of a flexible ventricular restraint device on cardiac remodeling after acute myocardial infarction. Am. Soc. Artif. Intern. Organs J. 52, 196–200 (2006). doi:10.1097/01.mat.0000199751.51424.78

    Article  Google Scholar 

  41. Costanzo, M.R., Ivanhoe, R.J., Kao, A., et al.: Prospective evaluation of elastic restraint to lessen the effects of heart failure (PEERLESS-HF) trial. J. Cardiac Fail. 18, 446–458 (2012). doi:10.1016/j.cardfail.2012.04.004

    Article  Google Scholar 

  42. McCarthy, P.M., Takagaki, M., Ochiai, Y., et al.: Device-based change in left ventricular shape: a new concept for the treatment of dilated cardiomyopathy. J. Thorac. Cardiovasc. Surg. 122, 482–490 (2001). doi:10.1067/mtc.2001.115240

    Article  Google Scholar 

  43. Guccione, J.M., Salahieh, A., Moonly, S.M., et al.: (2003) Myosplint decreases wall stress without depressing function in the failing heart: a finite element model study. Ann. Thorac. Surg. 76, 1171–80 (discussion 1180)

    Google Scholar 

  44. Mishra, Y.K., Mittal, S., Jaguri, P., Trehan, N.: Coapsys mitral annuloplasty for chronic functional ischemic mitral regurgitation: 1-year results. Ann. Thorac. Surg. 81, 42–46 (2006). doi:10.1016/j.athoracsur.2005.06.023

    Article  Google Scholar 

  45. Grossi, E.A., Patel, N., Woo, Y.J., et al.: Outcomes of the RESTOR-MV trial (randomized evaluation of a surgical treatment for off-pump repair of the mitral valve). J. Am. Coll. Cardiol. 56, 1984–1993 (2010). doi:10.1016/j.jacc.2010.06.051

    Article  Google Scholar 

  46. Kashem, A., Santamore, W.P., Hassan, S., et al.: CardioClasp : a new passive device to reshape cardiac enlargement. Am. Soc. Artif. Intern. Organs J. 48, 253–259 (2002)

    Article  Google Scholar 

  47. Kashem, A., Hassan, S., Crabbe, D.L., et al.: Left ventricular reshaping: effects on the pressure-volume relationship. J. Thorac. Cardiovasc. Surg. 125, 391–399 (2003). doi:10.1067/mtc.2003.4

    Article  Google Scholar 

  48. Kashem, A., Santamore, W.P., Hassan, S., et al.: CardioClasp changes left ventricular shape acutely in enlarged canine heart. J. Card. Surg. 18, S49–S60 (2003)

    Article  Google Scholar 

  49. Rane, A.A., Christman, K.L.: Biomaterials for the treatment of myocardial infarction: a 5-year update. J. Am. Coll. Cardiol. 58, 2615–2629 (2011). doi:10.1016/j.jacc.2011.11.001

    Article  Google Scholar 

  50. Kelley, S.T., Malekan, R., Gorman III, J.H., et al.: Restraining infarct expansion preserves left ventricular geometry and function after acute anteroapical infarction. Circulation 99, 135–142 (1999). doi:10.1161/01.CIR.99.1.135

    Article  Google Scholar 

  51. Moainie, S.L., Guy, T.S., Gorman III, J.H., et al.: Infarct restraint attenuates remodeling and reduces chronic ischemic mitral regurgitation after postero-lateral infarction. Ann. Thorac. Surg. 74, 444–449 (2002)

    Article  Google Scholar 

  52. Liao, S.-Y., Siu, C.-W., Liu, Y., et al.: Attenuation of left ventricular adverse remodeling with epicardial patching after myocardial infarction. J. Cardiac Fail. 16, 590–598 (2010). doi:10.1016/j.cardfail.2010.02.007

    Article  Google Scholar 

  53. Fujimoto, K.L., Tobita, K., Merryman, W.D., et al.: An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J. Am. Coll. Cardiol. 49, 2292–2300 (2007). doi:10.1016/j.jacc.2007.02.050

    Article  Google Scholar 

  54. Liu, J., Hu, Q., Wang, Z., et al.: Autologous stem cell transplantation for myocardial repair. Am. J. Physiol. Heart Circu. Physiol. 287, H501–H511 (2004). doi:10.1152/ajpheart.00019.2004

    Article  Google Scholar 

  55. Kellar, R.S., Shepherd, B.R., Larson, D.F., et al.: Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng. 11, 1678–1687 (2005). doi:10.1089/ten.2005.11.1678

    Article  Google Scholar 

  56. Zimmermann, W.-H., Melnychenko, I., Wasmeier, G., et al.: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12, 452–458 (2006). doi:10.1038/nm1394

    Article  Google Scholar 

  57. Simpson, D., Liu, H., Fan, T.-H.M., et al.: A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells 25, 2350–2357 (2007). doi:10.1634/stemcells.2007-0132

    Article  Google Scholar 

  58. Piao, H., Kwon, J.-S., Piao, S., et al.: Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials 28, 641–649 (2007). doi:10.1016/j.biomaterials.2006.09.009

    Article  Google Scholar 

  59. Giraud, M.-N., Flueckiger, R., Cook, S., et al.: Long-term evaluation of myoblast seeded patches implanted on infarcted rat hearts. Artif. Organs 34, E184–E192 (2010). doi:10.1111/j.1525-1594.2009.00979.x

    Article  Google Scholar 

  60. Godier-Furnémont, A.F.G., Martens, T.P., Koeckert, M.S., et al.: Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Natl. Acad. Sci. U.S.A. 108, 7974–7979 (2011). doi:10.1073/pnas.1104619108/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1104619108

    Article  Google Scholar 

  61. Chachques, J.C., Trainini, J.C., Lago, N., et al.: Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann. Thorac. Surg. 85, 901–908 (2008). doi:10.1016/j.athoracsur.2007.10.052

    Article  Google Scholar 

  62. Janz, R.F., Waldron, R.J.: Predicted effect of chronic apical aneurysms on the passive stiffness of the human left ventricle. Circ. Res. 42, 255–263 (1978). doi:10.1161/01.RES.42.2.255

    Article  Google Scholar 

  63. Fomovsky, G.M., Macadangdang, J.R., Ailawadi, G., Holmes, J.W.: Model-based design of mechanical therapies for myocardial infarction. J. Cardiovasc. Trans. Res. 4, 82–91 (2011). doi:10.1007/s12265-010-9241-3

    Article  Google Scholar 

  64. Dang, A.B.C., Guccione, J.M., Zhang, P., et al.: Effect of ventricular size and patch stiffness in surgical anterior ventricular restoration: a finite element model study. Ann. Thorac. Surg. 79, 185–193 (2005). doi:10.1016/j.athoracsur.2004.06.007

    Article  Google Scholar 

  65. Fomovsky, G.M., Clark, S.A., Parker, K.M., et al.: Anisotropic reinforcement of acute anteroapical infarcts improves pump function. Circu. Heart Fail. (2012). doi:10.1161/CIRCHEARTFAILURE.111.965731

    Google Scholar 

  66. Ghanta, R.K., Rangaraj, A., Umakanthan, R., et al.: Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure. Circulation 115, 1201–1210 (2007). doi:10.1161/CIRCULATIONAHA.106.671370

    Google Scholar 

  67. Lee, L.S., Ghanta, R.K., Mokashi, S.A., et al.: Optimized ventricular restraint therapy: adjustable restraint is superior to standard restraint in an ovine model of ischemic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 145(3), 824–831 (2012). doi:10.1016/j.jtcvs.2012.05.018

    Google Scholar 

  68. Jhun, C.-S., Wenk, J.F., Zhang, Z., et al.: Effect of adjustable passive constraint on the failing left ventricle: a finite-element model study. Ann. Thorac. Surg. 89, 132–137 (2010). doi:10.1016/j.athoracsur.2009.08.075

    Article  Google Scholar 

  69. Wenk, J.F., Wall, S.T., Peterson, R.C., et al.: A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns. J. Biomech. Eng. 131, 121011–121017 (2009). doi:10.1115/1.4000165

    Article  Google Scholar 

  70. Sobotta, J.: Atlas and Text-Book of Human Anatomy: Volume III, Vascular System, Lymphatic System, Nervous System and Sense Organs, p. 21. W.B. Saunders Company, Philadelphia (1907)

    Google Scholar 

  71. Saavedra, W.F., Tunin, R.S., Paolocci, N., et al.: Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. J. Am. Coll. Cardiol. 39, 2069–2076 (2002)

    Article  Google Scholar 

  72. Raman, J.: Management of heart failure, Vol. 2. Surgical, Fig 17.3. Springer, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Holmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clarke, S.A., Ghanta, R.K., Ailawadi, G., Holmes, J.W. (2013). Cardiac Restraint and Support Following Myocardial Infarction. In: Franz, T. (eds) Cardiovascular and Cardiac Therapeutic Devices. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2013_163

Download citation

  • DOI: https://doi.org/10.1007/8415_2013_163

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53835-3

  • Online ISBN: 978-3-642-53836-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics