Skip to main content

Advertisement

Log in

Model-Based Design of Mechanical Therapies for Myocardial Infarction

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The mechanical properties of healing myocardial infarcts are a critical determinant of pump function and the transition to heart failure. Recent reports suggest that modifying infarct mechanical properties can improve function and limit ventricular remodeling. However, little attempt has been made to identify the specific infarct material properties that would optimize left ventricular (LV) function. We utilized a finite-element model of a large anteroapical infarct in a dog heart to explore a wide range of infarct mechanical properties. Isotropic stiffening of the infarct reduced end-diastolic (EDV) and end-systolic (ESV) volumes, improved LV contractility, but had little effect on stroke volume. A highly anisotropic infarct, with high longitudinal stiffness but low circumferential stiffness coefficients, produced the best stroke volume by increasing diastolic filling, without affecting contractility or ESV. Simulated infarcts in two different locations displayed different transmural strain patterns. Our results suggest that there is a general trade-off between acutely reducing LV size and acutely improving LV pump function, that isotropically stiffening the infarct is not the only option of potential therapeutic interest, and that customizing therapies for different infarct locations may be important. Our model results should provide guidance for design and development of therapies to improve LV function by modifying infarct mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation, 121(7), e46–e215. doi:10.1161/CIRCULATIONAHA.109.192667.

    Article  PubMed  Google Scholar 

  2. Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181), 937–942. doi:10.1038/nature06800.

    Article  CAS  PubMed  Google Scholar 

  3. Chung, E. S., Menon, S. G., Weiss, R., Schloss, E. J., Chow, T., Kereiakes, D. J., et al. (2007). Feasibility of biventricular pacing in patients with recent myocardial infarction: impact on ventricular remodeling. Congestive Heart Failure, 13(1), 9–15.

    Article  PubMed  Google Scholar 

  4. Shuros, A. C., Salo, R. W., Florea, V. G., Pastore, J., Kuskowski, M. A., Chandrashekhar, Y., et al. (2007). Ventricular preexcitation modulates strain and attenuates cardiac remodeling in a swine model of myocardial infarction. Circulation, 116(10), 1162–1169. doi:10.1161/CIRCULATIONAHA.107.696294.

    Article  PubMed  Google Scholar 

  5. Holmes, J. W., Borg, T. K., & Covell, J. W. (2005). Structure and mechanics of healing myocardial infarcts. Annual Review of Biomedical Engineering, 7, 223–253. doi:10.1146/annurev.bioeng.7.060804.100453.

    Article  CAS  PubMed  Google Scholar 

  6. Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10(3–4), 403–409.

    Article  CAS  PubMed  Google Scholar 

  7. Dai, W., Wold, L. E., Dow, J. S., & Kloner, R. A. (2005). Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. Journal of the American College of Cardiology, 46(4), 714–719. doi:10.1016/j.jacc.2005.04.056.

    Article  CAS  PubMed  Google Scholar 

  8. Mukherjee, R., Zavadzkas, J. A., Saunders, S. M., McLean, J. E., Jeffords, L. B., Beck, C., et al. (2008). Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. The Annals of Thoracic Surgery, 86(4), 1268–1276. doi:10.1016/j.athoracsur.2008.04.107.

    Article  PubMed  Google Scholar 

  9. Ryan, L. P., Matsuzaki, K., Noma, M., Jackson, B. M., Eperjesi, T. J., Plappert, T. J., et al. (2009). Dermal filler injection: a novel approach for limiting infarct expansion. The Annals of Thoracic Surgery, 87(1), 148–155. doi:10.1016/j.athoracsur.2008.09.028.

    Article  PubMed  Google Scholar 

  10. Janz, R. F., & Waldron, R. J. (1978). Predicted effect of chronic apical aneurysms on the passive stiffness of the human left ventricle. Circulation Research, 42(2), 255–263.

    CAS  PubMed  Google Scholar 

  11. Bogen, D. K., Rabinowitz, S. A., Needleman, A., McMahon, T. A., & Abelmann, W. H. (1980). An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circulation Research, 47, 728–741.

    CAS  PubMed  Google Scholar 

  12. Costa, K. D., Takayama, Y., McCulloch, A. D., & Covell, J. W. (1999). Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. The American Journal of Physiology, 276(2 Pt 2), H595–H607.

    CAS  PubMed  Google Scholar 

  13. Arts, T., Costa, K. D., Covell, J. W., & McCulloch, A. D. (2001). Relating myocardial laminar architecture to shear strain and muscle fiber orientation. American Journal of Physiology. Heart and Circulatory Physiology, 280(5), H2222–H2229.

    CAS  PubMed  Google Scholar 

  14. Takayama, Y., Costa, K. D., & Covell, J. W. (2002). Contribution of laminar myofiber architecture to load-dependent changes in mechanics of LV myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 282(4), H1510–H1520. doi:10.1152/ajpheart.00261.2001.

    CAS  PubMed  Google Scholar 

  15. Holmes, J. W., Nunez, J. A., & Covell, J. W. (1997). Functional implications of myocardial scar structure. American Journal of Physiology. Heart and Circulatory Physiology, 272, H2123–H2130.

    CAS  Google Scholar 

  16. Nielsen, P. M. F., LeGrice, I. J., Smaill, B. H., & Hunter, P. J. (1991). Mathematical model of geometry and fibrous structure of the heart. American Journal of Physiology. Heart and Circulatory Physiology, 260, H1365–H1378.

    CAS  Google Scholar 

  17. Kerckhoffs, R. C., Neal, M. L., Gu, Q., Bassingthwaighte, J. B., Omens, J. H., & McCulloch, A. D. (2007). Coupling of a 3d finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Annals of Biomedical Engineering, 35(1), 1–18. doi:10.1007/s10439-006-9212-7.

    Article  PubMed  Google Scholar 

  18. Costa, K. D., Hunter, P. J., Wayne, J. S., Waldman, L. K., Guccione, J. M., & McCulloch, A. D. (1996). A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II—prolate spheroidal coordinates. Journal of Biomechanical Engineering, 118(4), 464–472.

    Article  CAS  PubMed  Google Scholar 

  19. Guccione, J. M., & McCulloch, A. D. (1993). Mechanics of active contraction in cardiac muscle: part I—constitutive relations for fiber stress that describe deactivation. Journal of Biomechanical Engineering, 115(1), 72–81.

    Article  CAS  PubMed  Google Scholar 

  20. Guccione, J. M., Costa, K. D., & McCulloch, A. D. (1995). Finite element stress analysis of left ventricular mechanics in the beating dog heart. Journal of Biomechanics, 28(10), 1167–1177.

    Article  CAS  PubMed  Google Scholar 

  21. Guccione, J. M., McCulloch, A. D., & Waldman, L. K. (1991). Passive material properties of intact ventricular myocardium determined from a cylindrical model. Journal of Biomechanical Engineering, 113(1), 42–55.

    Article  CAS  PubMed  Google Scholar 

  22. Doll, S., & Schweizerhof, K. (2000). On the development of volumetric strain energy functions. Journal of Applied Mechanics, 67, 17–21.

    Article  Google Scholar 

  23. Fomovsky, G. M., Holmes, J. W. (2009). Collagen fiber structure correlates with mechanical environment in healing myocardial infarcts. In: 2009 Summer Bioengineering Conference, Squaw Valley, CA, June 17–20, 2009.

  24. Roberts, R., DeMello, V., & Sobel, B. E. (1976). Deleterious effects of methyprednisolone in patients with myocardial infarction. Circulation, 53(3 Suppl I), I-204–I-205.

    CAS  Google Scholar 

  25. Kloner, R. A., Fishbein, M. C., Lew, H., Maroko, P. R., & Braunwald, E. (1978). Mummification of the infarcted myocardium by high dose corticosteroids. Circulation, 57(1), 56–63.

    CAS  PubMed  Google Scholar 

  26. Brown, E. J., Kloner, R. A., Schoen, F. J., Hammerman, H., Hale, S., & Braunwald, E. (1983). Scar thinning due to ibuprofen administration after experimental myocardial infarction. The American Journal of Cardiology, 51, 877–883.

    Article  CAS  PubMed  Google Scholar 

  27. Hammerman, H., Kloner, R. A., Hale, S., Schoen, F. J., & Braunwald, E. (1983). Dose-dependent effects of short-term methylprednisolone on myocardial infarct extent scar formation and ventricular function. Circulation, 68(2), 446–452.

    CAS  PubMed  Google Scholar 

  28. Hammerman, H., Kloner, R. A., Schoen, F. J., Brown, E. J., Hale, S., & Braunwald, E. (1983). Indomethacin-induced scar thinning after experimental myocardial infarction. Circulation, 67(6), 1290–1295.

    CAS  PubMed  Google Scholar 

  29. Mann, D. L., Acker, M. A., Jessup, M., Sabbah, H. N., Starling, R. C., & Kubo, S. H. (2007). Clinical evaluation of the CorCap cardiac support device in patients with dilated cardiomyopathy. The Annals of Thoracic Surgery, 84(4), 1226–1235. doi:10.1016/j.athoracsur.2007.03.095.

    Article  PubMed  Google Scholar 

  30. Starling, R. C., Jessup, M., Oh, J. K., Sabbah, H. N., Acker, M. A., Mann, D. L., et al. (2007). Sustained benefits of the CorCap cardiac support device on left ventricular remodeling: three year follow-up results from the Acorn clinical trial. The Annals of Thoracic Surgery, 84(4), 1236–1242. doi:10.1016/j.athoracsur.2007.03.096.

    Article  PubMed  Google Scholar 

  31. Ailawadi, G., & Kron, I. L. (2008). New strategies for surgical management of ischemic cardiomyopathy. Expert Review of Cardiovascular Therapy, 6(4), 521–530. doi:10.1586/14779072.6.4.521.

    Article  PubMed  Google Scholar 

  32. Klodell, C. T., Jr., Aranda, J. M., Jr., McGiffin, D. C., Rayburn, B. K., Sun, B., Abraham, W. T., et al. (2008). Worldwide surgical experience with the Paracor HeartNet cardiac restraint device. The Journal of Thoracic and Cardiovascular Surgery, 135(1), 188–195. doi:10.1016/j.jtcvs.2007.09.034.

    Article  PubMed  Google Scholar 

  33. Jugdutt, B. I. (2009). Current and novel cardiac support therapies. Current Heart Failure Reports, 6(1), 19–27.

    Article  PubMed  Google Scholar 

  34. Topkara, V. K., Kondareddy, S., & Mann, D. L. (2009). Modulation of left ventricular dilation remodeling with epicardial restraint devices in postmyocardial infarction heart failure. Current Heart Failure Reports, 6(4), 229–235.

    Article  PubMed  Google Scholar 

  35. Kelley, S. T., Malekan, R., Gorman, J. H., 3rd, Jackson, B. M., Gorman, R. C., Suzuki, Y., et al. (1999). Restraining infarct expansion preserves left ventricular geometry and function after acute anteroapical infarction. Circulation, 99(1), 135–142.

    CAS  PubMed  Google Scholar 

  36. Enomoto, Y., Gorman, J. H., 3rd, Moainie, S. L., Jackson, B. M., Parish, L. M., Plappert, T., et al. (2005). Early ventricular restraint after myocardial infarction: extent of the wrap determines the outcome of remodeling. The Annals of Thoracic Surgery, 79(3), 881–887. doi:10.1016/j.athoracsur.2004.05.072. discussion 881-887.

    Article  PubMed  Google Scholar 

  37. Liao, S. Y., Siu, C. W., Liu, Y., Zhang, Y., Chan, W. S., Wu, E. X., et al. (2010). Attenuation of left ventricular adverse remodeling with epicardial patching after myocardial infarction. Journal of Cardiac Failure, 16(7), 590–598. doi:10.1016/j.cardfail.2010.02.007.

    Article  PubMed  Google Scholar 

  38. Pilla, J. J., Blom, A. S., Gorman, J. H., 3rd, Brockman, D. J., Affuso, J., Parish, L. M., et al. (2005). Early postinfarction ventricular restraint improves borderzone wall thickening dynamics during remodeling. The Annals of Thoracic Surgery, 80(6), 2257–2262.

    Article  PubMed  Google Scholar 

  39. Blom, A. S., Pilla, J. J., Arkles, J., Dougherty, L., Ryan, L. P., Gorman, J. H., 3rd, et al. (2007). Ventricular restraint prevents infarct expansion and improves borderzone function after myocardial infarction: a study using magnetic resonance imaging, three-dimensional surface modeling, and myocardial tagging. The Annals of Thoracic Surgery, 84(6), 2004–2010. doi:10.1016/j.athoracsur.2007.06.062.

    Article  PubMed  Google Scholar 

  40. Ghanta, R. K., Rangaraj, A., Umakanthan, R., Lee, L., Laurence, R. G., Fox, J. A., et al. (2007). Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure. Circulation, 115(10), 1201–1210. doi:10.1161/CIRCULATIONAHA.106.671370.

    PubMed  Google Scholar 

  41. Jhun, C. S., Wenk, J. F., Zhang, Z., Wall, S. T., Sun, K., Sabbah, H. N., et al. (2010). Effect of adjustable passive constraint on the failing left ventricle: a finite-element model study. The Annals of Thoracic Surgery, 89(1), 132–137. doi:10.1016/j.athoracsur.2009.08.075.

    Article  PubMed  Google Scholar 

  42. Guccione, J. M., Salahieh, A., Moonly, S. M., Kortsmit, J., Wallace, A. W., & Ratcliffe, M. B. (2003). Myosplint decreases wall stress without depressing function in the failing heart: a finite element model study. The Annals of Thoracic Surgery, 76(4), 1171–1180. discussion 1180.

    Article  PubMed  Google Scholar 

  43. Dang, A. B., Guccione, J. M., Zhang, P., Wallace, A. W., Gorman, R. C., Gorman, J. H., 3rd, et al. (2005). Effect of ventricular size and patch stiffness in surgical anterior ventricular restoration: a finite element model study. The Annals of Thoracic Surgery, 79(1), 185–193. doi:10.1016/j.athoracsur.2004.06.007.

    Article  PubMed  Google Scholar 

  44. Wall, S. T., Walker, J. C., Healy, K. E., Ratcliffe, M. B., & Guccione, J. M. (2006). Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation, 114(24), 2627–2635. doi:10.1161/CIRCULATIONAHA.106.657270.

    Article  PubMed  Google Scholar 

  45. Wenk, J. F., Wall, S. T., Peterson, R. C., Helgerson, S. L., Sabbah, H. N., Burger, M., et al. (2009). A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns. Journal of Biomechanical Engineering, 131(12), 121011. doi:10.1115/1.4000165.

    Article  PubMed  Google Scholar 

  46. Kroon, W., Delhaas, T., Bovendeerd, P., & Arts, T. (2008). Structure and torsion in the normal and situs inversus totalis cardiac left ventricle. II. Modeling cardiac adaptation to mechanical load. American Journal of Physiology. Heart and Circulatory Physiology, 295(1), H202–H210. doi:10.1152/ajpheart.00877.2007.

    Article  CAS  PubMed  Google Scholar 

  47. Mazhari, R., & McCulloch, A. D. (2000). Integrative models for understanding the structural basis of regional mechanical dysfunction in ischemic myocardium. Annals of Biomedical Engineering, 28(8), 979–990.

    Article  CAS  PubMed  Google Scholar 

  48. Mazhari, R., Omens, J. H., Covell, J. W., & McCulloch, A. D. (2000). Structural basis of regional dysfunction in acutely ischemic myocardium. Cardiovascular Research, 47(2), 284–293.

    Article  CAS  PubMed  Google Scholar 

  49. Herz, S. L., Hasegawa, T., Makaryus, A. N., Parker, K. M., Homma, S., Wang, J., et al. (2010). Quantitative three-dimensional wall motion analysis predicts ischemic region size and location. Annals of Biomedical Engineering, 38(4), 1367–1376. doi:10.1007/s10439-009-9880-1.

    Article  PubMed  Google Scholar 

  50. Sunagawa, K., Maughan, W. L., & Sagawa, K. (1983). Effect of regional ischemia on the left ventricular end-systolic pressure–volume relationship of isolated canine hearts. Circulation Research, 52(2), 170–178.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a Coulter Foundation Translational Research Grant (JWH, GA) and by NIH R01 HL-075639 (JWH). The authors wish to thank Dr. Roy Kerckhoffs at the University of California, San Diego, for his advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomovsky, G.M., Macadangdang, J.R., Ailawadi, G. et al. Model-Based Design of Mechanical Therapies for Myocardial Infarction. J. of Cardiovasc. Trans. Res. 4, 82–91 (2011). https://doi.org/10.1007/s12265-010-9241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9241-3

Keywords

Navigation