Skip to main content

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 14))

Abstract

This chapter is meant as an overview of our already published work that we carry out on modeling wound healing on the cellular, colony and tissue scale, though we detail the description of some stochastic principles that appear in our models. The relation between the scales is described in terms of the underlying biological and mathematical concepts. We also present the implications and applicability of the mathematical models studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vermolen, F.J., Gefen, A.: A semi-stochastic cell-based formalism to model the dynamics of migration of cells in colonies. Biomech. Model. Mechanobiol. 11(1–2), 183–195 (2012)

    Article  Google Scholar 

  2. Byrne, H., Drasdo, D.: Individual-based and continuum models of growthing cell populations: a comparison. J. Math. Biol. 58, 657–687 (2009)

    Article  MathSciNet  Google Scholar 

  3. Sherratt, J.A., Murray, J.D.: Mathematical analysis of a basic model for epidermal wound healing. J. Math. Biol. 29, 389–404 (1991)

    Google Scholar 

  4. Filion, J., Popel, A.P.: A reaction diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann. Biomed.Eng. 32(5), 645–663 (2004)

    Google Scholar 

  5. Maggelakis, S.A.: A mathematical model for tissue replacement during epidermal wound healing. Appl. Math. Modell. 27(3), 189–196 (2003)

    Google Scholar 

  6. Gaffney, E.A., Pugh, K., Maini, P.K.: Investigating a simple model for cutaneous wound healing angiogenesis. J. Math. Biol. 45(4), 337–374 (2002)

    Google Scholar 

  7. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications.Springer, New York (2004)

    Google Scholar 

  8. Maggelakis, S.A.: Modeling the role of angiogenesis in epidermal wound healing. Discr.Cont. Syst. 4, 267–273 (2004)

    Google Scholar 

  9. Adam, J.A.: A simplified model of wound healing (with particular reference to the critical size defect). Math. Comput. Model. 30, 23–32 (1999)

    Google Scholar 

  10. Vermolen, F.J., Adam, J.A.: A finite element model for epidermal wound healing. In:Computational Science, ICCS 2007. Springer, Heidelberg, pp. 70–77

    Google Scholar 

  11. Olsen, L., Sherratt, J.A., Maini, P.K.: A mechanochemical model for adult dermal wound closure and the permanence of the contracted tissue displacement role. J. Theor. Biol. 177, 113–128 (1995)

    Google Scholar 

  12. Alarcon, T., Byrne, H., Maini, P., Panovska, J.: Mathematical modeling of angiogenesis and vascular adaptation. In: Paton, R., McNamara, L. (eds.) Studies in Multidisciplinary, vol. 3, pp. 369–387 (2006)

    Google Scholar 

  13. Vermolen F.J.: A simplified finite element model for tissue regeneration with angiogenesis. ASCE J. Eng. Mech. 135(5), 450–460 (2009)

    Google Scholar 

  14. Javierre, E., Vermolen, F.J., Vuik, C, van der Zwaag, S.: A mathematical approach to epidermal wound closure: model Analysis and Computer Simulations. J. Math. Biol. doi: 10.1007/s00285-008-0242-7; http://www.springerlink.com/content/w4j6633345j7228k/fulltext.pdf(2008)

  15. Tranquillo, R.T., Murray, J.D.: Continuum model of fibroblast-driven wound contraction inflammation-mediation. J. Theor. Biol. 158(2), 135–172 (1992)

    Google Scholar 

  16. Pettet, G.J., Byrne, H.M., McElwain, D.L.S., Norbury, J.: A model of wound healing angiogenesis in soft tissue. Math. Biosci. 136, 35–63 (1996)

    Google Scholar 

  17. Vermolen, F.J., Gefen, A.: A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell–cell contacts. Biomech. Model. Mechanobiol. (2012, in press)

    Google Scholar 

  18. Vermolen, F.J., Gefen, A.: A semi-stochastic cell-based model for in-vitro infected ‘wound healing through motility reduction. J. Theor. Biol. (Submitted, 2012), doi:10.1016/j.jtbi.2012.11.007

  19. Groh, A., Louis, A.K.: Stochastic modeling of biased cell migration and collagen matrix modification. J. Math. Biol. 61, 617–647 (2010)

    Google Scholar 

  20. CJones, G.W., Chapman, S.J.: Modeling growth in biological materials. SIAM Rev. 54(1), 52–118 (2012)

    Google Scholar 

  21. Vermolen, F.J., Gefen, A., Dunlop, J.W.C.: In vitro ‘wound’ healing: experimentally based phenomenological modeling. Adv. Eng. Mater. 14(3), B76–B88 (2012)

    Google Scholar 

  22. Vermolen, F.J., van Baaren, E., Adam, J.A.: A simplified model for growth factor induced healing of circular wounds. Math. Comput. Model. 44, 887–898 (2006)

    Google Scholar 

  23. Vermolen, F.J., Javierre, E.: On the construction of analytic solutions for a diffusion-reaction equation with a discontinuous switch mechanism. J. Comput. Appl. Math. doi:10.1016/j.cam.2009.05.022 (2009)

  24. Steele, J.M.: Stochastic Calculus and Financial Applications. Springer, New York (2001)

    Google Scholar 

  25. Kim, Y.-Ch.: Diffusivity of bacteria. Korean J. Chem. Eng. 13(3), 282–287 (1996)

    Google Scholar 

  26. Neilson, M.P., MacKenzie, J.A., Webb, S.D., Insall, R.H.: Modeling cell movement and chemotaxis using pseudopod-based feedback. SIAM J. Sci. Comput. 33(3), 1035–1057 (2011)

    Google Scholar 

  27. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol 19, 2nd edn. Americal Mathematical Society, Providence 49, 22–25 (1998).

    Google Scholar 

  28. Gefen, A.: Effects of virus size and cell stiffness on forces, work and pressures driving membrane invagination in a receptor-mediated endocytosis. J. Biomech. Eng. (ASME) 132(8), 4501–4505 (2010).

    Google Scholar 

  29. Vermolen, F.J., Javierre, E.: A finite-element model for healing of cutaneous wounds combining contraction, angiogenesis and closure. J. Math. Biol. doi:10.1007/s00285-011-0487-4

  30. Sachdev, P.L.: Nonlinear Diffusive Waves. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  31. de Vries, G., Hillen, Th., Lewis, M., Müller, J., Schönfisch, B.: A Course in Mathematical Biology: Quantitative Modeling with Mathematical and Computational Methods. SIAM, Philadelphia (2006)

    Google Scholar 

  32. Prokharau, P.A., Vermolen, F.J., Garcia-Aznar, J.M.: Model for direct bone apposition on pre- existing surfaces during peri-implant osseointegration. J. Theor. Biol. 304, 131–142 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred J. Vermolen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vermolen, F.J., Gefen, A. (2013). Wound Healing: Multi-Scale Modeling. In: Gefen, A. (eds) Multiscale Computer Modeling in Biomechanics and Biomedical Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_156

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_156

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36481-5

  • Online ISBN: 978-3-642-36482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics