Skip to main content

Oxygen Transport in Bioreactors for Engineered Vascular Tissues

  • Chapter
  • First Online:
Computational Modeling in Tissue Engineering

Abstract

Tissue engineered vascular grafts cultured in vitro are often done so under static conditions, which forces a diffusion-only mass transport regime for nutrient delivery and metabolite removal. Some bioreactor culture methods employ mechanical stimulation to improve material strength and stiffness; however, even with mechanical stimulation, engineered tissues are likely to operate in a diffusional transport regime for nutrient delivery and metabolite removal. In this study, we present an analysis of dissolved oxygen (DO) transport limitations that can arise in statically cultured vascular grafts and highlight bioreactor designs that improve transport, particularly by perfusion of medium through the interstitial space by transmural flow. A computational analysis is provided in conjunction with empirical data to support the models. Our goal was to investigate designs that would eliminate nutrient gradients that are evident using static culture methods in order to develop more uniform engineered vascular tissues, which could potentially improve mechanical strength and stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, R.K., Au, P., Tam, J., Duda, D.G., Fukumura, D.: Engineering vascularized tissue. Nat. Biotechnol. 23, 821–823 (2005)

    Article  Google Scholar 

  2. Malda, J., Rouwkema, J., Martens, D.E., le Comte, E.P., Kooy, F.K., Tramper, J., et al.: Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnol. Bioeng. 86, 9–18 (2004)

    Article  Google Scholar 

  3. Malda, J., Woodfield, T.B.F., van der Vloodt, F., Wilson, C., Martens, D.E., Tramper, J., et al.: The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 26, 63–72 (2005)

    Article  Google Scholar 

  4. Nikolaev, N.I., Obradovic, B., Versteeg, H.K., Lemon, G., Williams, D.J.: A validated model of GAG deposition, cell distribution, and growth of tissue engineered cartilage cultured in a rotating bioreactor. Biotechnol. Bioeng. 105, 842–852 (2009)

    Google Scholar 

  5. Brown, D.A., MacLellan, W.R., Laks, H., Dunn, J.C.Y., Wu, B.M., Beygui, R.E.: Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnol. Bioeng. 97, 962–975 (2007)

    Article  Google Scholar 

  6. Radisic, M., Malda, J., Epping, E., Geng, W.L., Langer, R., Vunjak-Novakovic, G.: Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93, 332–343 (2006)

    Article  Google Scholar 

  7. Potier, E., Ferreira, E., Meunier, A., Sedel, L., Logeart-Avramoglou, D., Petite, H.: Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 13, 1325–1331 (2007)

    Article  Google Scholar 

  8. Demol, J., Lambrechts, D., Geris, L., Schrooten, J., Van Oosterwyck, H.: Towards a quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels. Biomaterials 32, 107–118 (2011)

    Article  Google Scholar 

  9. Isenberg, B.C., Williams, C., Tranquillo, R.T.: Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann. Biomed. Eng. 34, 971–985 (2006)

    Article  Google Scholar 

  10. Webb, A.R., Macrie, B.D., Ray, A.S., Russo, J.E., Siegel, A.M., Glucksberg, M.R., et al.: In vitro characterization of a compliant biodegradable scaffold with a novel bioreactor system. Ann. Biomed. Eng. 35, 1357–1367 (2007)

    Article  Google Scholar 

  11. Hahn, M.S., McHale, M.K., Wang, E., Schmedlen, R.H., West, J.L.: Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann. Biomed. Eng. 35, 190–200 (2007)

    Article  Google Scholar 

  12. Butcher, J.T., Barrett, B.C., Nerem, R.M.: Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall. Biomaterials 27, 5252–5258 (2006)

    Article  Google Scholar 

  13. Stegemann, J.P., Hong, H., Nerem, R.M.: Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J. Appl. Physiol. 98, 2321–2327 (2005)

    Article  Google Scholar 

  14. Syedain, Z.H., Weinberg, J.S., Tranquillo, R.T.: Cyclic distension of fibrin-based tissue constructs: Evidence of adaptation during growth of engineered connective tissue. Proc. Natl. Acad. Sci. USA 105, 6537–6542 (2008)

    Article  Google Scholar 

  15. Niklason, L.E., Gao, J., Abbott, W.M., Hirschi, K.K., Houser, S., Marini, R., et al.: Functional arteries grown in vitro. Science 284, 489–493 (1999)

    Article  Google Scholar 

  16. Niklason, L.E., Abbott, W., Gao, J., Klagges, B., Hirschi, K.K., Ulubayram, K., et al.: Morphologic and mechanical characteristics of engineered bovine arteries. J. Vasc. Surg. 33, 628–638 (2001)

    Article  Google Scholar 

  17. Williams, C., Wick, T.M.: Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng. 10, 930–941 (2004)

    Article  Google Scholar 

  18. Khong, Y.M., Mang, J., Zhou, S.B., Cheung, C., Doberstein, K., Samper, V., et al.: Novel intra-tissue perfusion system for culturing thick liver tissue. Tissue Eng. 13, 2345–2356 (2007)

    Article  Google Scholar 

  19. Radisic, M., Yang, L., Boublik, J., Cohen, R.J., Langer, R., Freed, L.E., et al.: Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H507–H516 (2004)

    Article  Google Scholar 

  20. Radisic, M., Malda, J., Epping, E., Geng, W.L., Langer, R., Vunjak-Novakovic, G.: Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93, 332–343 (2006)

    Article  Google Scholar 

  21. Chung, C.A., Chen, C.W., Chen, C.P., Tseng, C.S.: Enhancement of cell growth in tissue-engineering constructs under direct perfusion: modeling and simulation. Biotechnol. Bioeng. 97, 1603–1616 (2007)

    Article  Google Scholar 

  22. Kitagawa, T., Yamaoka, T., Iwase, R., Murakami, A.: Three-dimensional cell seeding and growth in radial-flow perfusion bioreactor for in vitro tissue reconstruction. Biotechnol. Bioeng. 93, 947–954 (2006)

    Article  Google Scholar 

  23. Bjork, J.W., Tranquillo, R.T.: Transmural flow bioreactor for vascular tissue engineering. Biotechnol. Bioeng. 104, 1197–1206 (2009)

    Article  Google Scholar 

  24. Syedain, Z.H., Meier, L.A., Bjork, J.W., Lee, A., Tranquillo, R.T.: Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32, 714–722 (2011)

    Article  Google Scholar 

  25. Chung, C.A., Chen, C.W., Chen, C.P., Tseng, C.S.: Enhancement of cell growth in tissue-engineering constructs under direct perfusion: modeling and simulation. Biotechnol. Bioeng. 97, 1603–1616 (2007)

    Article  Google Scholar 

  26. Wang, S., Tarbell, J.M.: Effect of fluid flow on smooth muscle cells in a 3-dimensional collagen gel model. Arterioscler. Thromb. Vasc. Biol. 20, 2220–2225 (2000)

    Article  Google Scholar 

  27. Papas, K.K., Pisania, A., Wu, H., Weir, G.C., Colton, C.K.: A stirred microchamber for oxygen consumption rate measurements with pancreatic islets. Biotechnol. Bioeng. 98, 1071–1082 (2007)

    Article  Google Scholar 

  28. Avgoustiniatos, E.: Oxygen diffusion limitation in pancreatic islet culture and immunoisolation. Massachusetts Institute of Technology, Cambridge (2001)

    Google Scholar 

  29. Tschoeke, B., Flanagan, T.C., Koch, S., Harwoko, M.S., Deichmann, T., Ella, V., et al.: Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue eng. 15, 1909–1918 (2009)

    Article  Google Scholar 

  30. Hoerstrup, S.P., Zund, G., Sodian, R., Schnell, A.M., Grunenfelder, J., Turina, M.I.: Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac. Surg. 20, 164–169 (2001)

    Article  Google Scholar 

  31. Seliktar D., Black R.A., Vito R.P., Nerem R.M.: Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28, 351–362 (2000)

    Google Scholar 

  32. Simpson, N.E., Han, Z.C., Berendzen, K.M., Sweeney, C.A., Oca-Cossio, J.A., Constantinidis, I., et al.: Magnetic resonance spectroscopic investigation of mitochondrial fuel metabolism and energetics in cultured human fibroblasts: Effects of pyruvate dehydrogenase complex deficiency and dichloroacetate. Mol. Genet. Metab. 89, 97–105 (2006)

    Article  Google Scholar 

  33. Decker, S., Lipmann, F.: Transport of d-glucose by membrane vesicles from normal and avian sarcoma virus transformed chicken embryo fibroblasts. Proc. Natl. Acad. Sci. USA 78, 5358–5361 (1981)

    Article  Google Scholar 

  34. Truskey, G.A., Yuan, F., Katz, D.F.: Transport Phenomena in Biological Systems. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  35. Weind, K.L., Boughner, D.R., Rigutto, L., Ellis, C.G.: Oxygen diffusion and consumption of aortic valve cusps. Am. J. Physiol.-Heart Circ. Physiol. 281, H2604–H2611 (2001)

    Google Scholar 

  36. Rong, Z., Cheema, U., Vadgama, P.: Needle enzyme electrode based glucose diffusive transport measurement in a collagen gel and validation of a simulation model. Analyst 131, 816–821 (2006)

    Article  Google Scholar 

  37. Dean, J.A.: Lange’s Handbook of Chemistry (15th Edition), 15th edn. McGraw Hill, New York (1999)

    Google Scholar 

  38. Lee, J.: Biochemical Engineering. Prentice Hall, Englewood Cliffs, NJ (1991)

    Google Scholar 

  39. Invitrogen Life Technologies. http://products.invitrogen.com/ivgn/product/21063029#coa. Accessed 14 April 2011

Download references

Acknowledgments

This work has been supported by National Institutes of Health (NHLBI R01 HL083880 to RTT) and 3M Company (JWB). Furthermore, the technical assistance of Naomi Ferguson and Lee Meier is gratefully acknowledged as well as Dave Hultman for his efforts in machining and design discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Tranquillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bjork, J.W., Safonov, A.M., Tranquillo, R.T. (2012). Oxygen Transport in Bioreactors for Engineered Vascular Tissues. In: Geris, L. (eds) Computational Modeling in Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2012_133

Download citation

  • DOI: https://doi.org/10.1007/8415_2012_133

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32562-5

  • Online ISBN: 978-3-642-32563-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics