Skip to main content

Advertisement

Log in

Endothelialization and Flow Conditioning of Fibrin-Based Media-Equivalents

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

It is generally accepted that endothelialization and subsequent development of a functional endothelium are of paramount importance to the success of any bioartificial artery. In this study, we aimed to assess the ability of smooth muscle cell-remodeled, fibrin-based media-equivalents (MEs) to be endothelialized, examine the morphological changes of endothelial cells (ECs) associated with exposure to physiologically-relevant shear stress in a custom-built bioreactor, and determine if adherent ECs are capable of withstanding average physiological shear stresses. It was found that MEs could be readily endothelialized with surface coverages of 98.8 ± 0.9% after two days, and the ECs expressed von Willebrand factor. Furthermore, EC retention remained high (steady: 96.5 ± 4.4%, pulsatile: 94.3 ± 4.3%) under exposure to physiologically relevant shear stresses for 48 h. The results indicate that these MEs are conducive to generating an EC monolayer, with the ECs possessing adhesion strength sufficient to withstand physiological shear stress and maintain a normal phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

Similar content being viewed by others

REFERENCES

  1. Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell. New York: Garland Publishing, Inc., 1994.

    Google Scholar 

  2. Anderson, J. S., T. M. Price, S. R. Hanson, and L. A. Harker. In vitro endothelialization of small-caliber vascular grafts. Surgery 101:577–586, 1987.

    PubMed  CAS  Google Scholar 

  3. Aper, T., O. E. Teebken, G. Steinhoff, and A. Haverich. Use of a fibrin preparation in the engineering of a vascular graft model. Eur. J. Vasc. Endovasc. Surg. 28:296–302, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. Baguneid, M., D. Murray, H. J. Salacinski, B. Fuller, G. Hamilton, M. Walker, and A. M. Seifalian. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnol. Appl. Biochem. 39:151–157, 2004.

    Article  PubMed  CAS  Google Scholar 

  5. Baker, K. S., S. K. Williams, B. E. Jarrell, E. A. Koolpe, and E. Levine. Endothelialization of human collagen surfaces with human adult endothelial cells. Am. J. Surg. 150:197–200, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Baumgartner, H. R. Platelet interaction with collagen fibrils in flowing blood. I. Reaction of human platelets with alpha chymotrypsin-digested subendothelium. Thromb. Haemost. 37:1–16, 1977.

    PubMed  CAS  Google Scholar 

  7. Bowlin, G. L., S. E. Rittgers, S. P. Schmidt, T. Alexander, D. B. Sheffer, and A. Milsted. Determination of the prime electrostatic endothelial cell transplantation procedure for e-PTFE vascular prostheses. Cell. Transplant. 9:337–348, 2000.

    PubMed  CAS  Google Scholar 

  8. Buga, G. M., M. E. Gold, J. M. Fukuto, and L. J. Ignarro. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension 17:187–193, 1991.

    PubMed  CAS  Google Scholar 

  9. Cines, D. B., E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561, 1998.

    PubMed  CAS  Google Scholar 

  10. Conte, M. S. The ideal small arterial substitute: a search for the Holy Grail? FASEB J. 12:43–45, 1998.

    PubMed  CAS  Google Scholar 

  11. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    PubMed  CAS  Google Scholar 

  12. Davies, P. F., A. Remuzzi, E. S. Gordon, C. F. Dewey, and M. A. Gimbrone. Turbulent shear stress induces vascular endothelial turnover in vitro. Proceedings of the National Academy of Science USA. 83:2114–2118, 1986.

    Google Scholar 

  13. Esquivel, C. O., and F. W. Blaisdell. Why small caliber vascular grafts fail: A review of clinical and experimental experience and the significance of the interaction of blood at the interface. J. Vasc. Res. 41:1–15, 1986.

    Article  CAS  Google Scholar 

  14. Feugier, P., R. A. Black, J. A. Hunt, and T. V. How. Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress. Biomaterials 26:1457–1466, 2005.

    Article  PubMed  CAS  Google Scholar 

  15. Fields, C., A. Cassano, R. G. Makhoul, C. Allen, R. Sims, J. Bulgrin, A. Meyer, G. L. Bowlin, and S. E. Rittgers. Evaluation of electrostatically endothelial cell seeded expanded polytetrafluoroethylene grafts in a canine femoral artery model. J. Biomater. Appl. 17:135–152, 2002.

    Article  PubMed  Google Scholar 

  16. Foxall, T. L., K. R. Auger, A. D. Callow, and P. Libby. Adult human endothelial cell coverage of small-caliber Dacron and polytetrafluoroethylene vascular prostheses in vitro. J. Surg. Res. 41:158–172, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Frangos, J. A., S. G. Eskin, L. V. McIntire, and C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res. 22:165–197, 1968.

    PubMed  CAS  Google Scholar 

  19. Galbusera, M., S. Buelli, S. Gastoldi, D. Macconi, S. Angioletti, C. Testa, G. Remuzzi, and M. Morigi. Activation of porcine endothelium in response to xenogeneic serum causes thrombosis independently of platelet activation. Xenotransplantation 12:110–120, 2005.

    Article  PubMed  Google Scholar 

  20. Galbusera, M., C. Zoja, R. Donadelli, S. Paris, M. Morigi, A. Benigni, M. Figliuzzi, G. Remuzzi, and A. Remuzzi. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood 90:1558–1564, 1997.

    PubMed  CAS  Google Scholar 

  21. Gosselin, C., D. A. Vorp, V. Warty, D. A. Severyn, E. K. Dick, H. S. Borovetz, and H. P. Greisler. ePTFE coating with fibrin glue, FGF-1, and heparin: effect on retention of seeded endothelial cells. J. Surg. Res. 60:327–332, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Grabowski, E. F., E. A. Jaffe, and B. B. Weksler. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. Clin. Med. 105:36–43, 1985.

    PubMed  CAS  Google Scholar 

  23. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater Res. 60:607–612, 2002.

    Article  PubMed  CAS  Google Scholar 

  24. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. A 66:550–561, 2003.

    Article  CAS  Google Scholar 

  25. Herring, M., A. Gardner, and J. Glover. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery 84:498–504, 1978.

    PubMed  CAS  Google Scholar 

  26. Jarrell, B. E., S. K. Williams, J. R. Hoch, and R. A. Carabasi. Perspectives in vascular surgery–biocompatible vascular surfaces: the past and future role of endothelial cells. Bull. N. Y. Acad. Med. 63:156–167, 1987.

    PubMed  CAS  Google Scholar 

  27. Kaehler, J., P. Zilla, R. Fasol, and M. Deutsch. Precoating substrate and surface configuration determine adherence and spreading of seeded endothelial cells on polytetrafluoroethylene grafts. J. Vasc. Surg. 9:535–541, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Kempczinski, R. F., J. E. Rosenman, W. H. Pearce, L. R. Roedersheimer, Y. Berlatzky, and G. Ramalanjaona. Endothelial cell seeding of a new PTFE vascular prosthesis. J. Vasc. Surg. 2:424–429, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Kesler, K. A., M. B. Henning, M. P. Arnold, J. L. Glover, H.-M. Park, M. N. Helmus, and P. J. Bendick. Enhanced strength of endothelial attachment on polyester elastomer and polytetrafluoroethylene graft surfaces with fibronectin. J. Vasc. Surg. 3:58–64, 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Klanchar, M., J. M. Tarbell, and D.-M. Wang. In vitro study of radial wall motion on wall shear stress in an elastic tube model of the aorta. Circ. Res. 66:1624–1635, 1990.

    PubMed  CAS  Google Scholar 

  31. Koveker, G. B., L. M. Graham, W. E. Burkel, R. Sell, T. W. Wakefield, K. Dietrich, and J. C. Stanley. Extracellular matrix preparation of expanded polytetrafluoroethylene grafts seeded with endothelial cells: influence on early platelet deposition, cellular growth, and luminal prostacyclin release. Surgery 109:313–319, 1991.

    PubMed  CAS  Google Scholar 

  32. L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12:47–56, 1998.

    PubMed  CAS  Google Scholar 

  33. Mazzucotelli, J. P., J. L. Roudiere, F. Bernex, P. Bertrand, J. Leandri, and D. Loisance. A new device for endothelial cell seeding of a small-caliber vascular prosthesis. Artif. Organs. 17:787–790, 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Meinhart, J. G., M. Deutsch, T. Fischlein, N. Howanietz, A. Froschl, and P. Zilla. Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann. Thorac. Surg. 71:S327–S331, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. Muller-Glauser, W., P. Zilla, M. Lachat, B. Bisang, F. Rieser, L. von Segesser, and M. Turina. Immediate shear stress resistance of endothelial cell monolayers seeded in vitro on fibrin glue-coated ePTFE prostheses. Eur. J. Vasc. Surg. 7:324–328, 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Nerem, R. M., R. W. Alexander, D. C. Chappell, R. M. Medford, S. E. Varner, and W. R. Taylor. The study of the influence of flow on vascular endothelial biology. Am. J. Med. Sci. 316:169–175, 1998.

    Article  PubMed  CAS  Google Scholar 

  37. Nerem, R. M., and A. E. Ensley. The tissue engineering of blood vessels and the heart. Am. J. Transplant. 4 Suppl 6:36–42, 2004.

    Article  PubMed  CAS  Google Scholar 

  38. Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Ohno, M., J. P. Cooke, V. J. Dzau, and G. H. Gibbons. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J. Clin. Invest. 95:1363–1369, 1995.

    CAS  Google Scholar 

  40. Paszkowiak, J. J., and A. Dardik. Arterial wall shear stress: observations from the bench to the bedside. Vasc. Endovasc. Surg. 37:47–57, 2003.

    Article  PubMed  Google Scholar 

  41. Pawlowski, K. J., S. E. Rittgers, S. P. Schmidt, and G. L. Bowlin. Endothelial cell seeding of polymeric vascular grafts. Front Biosci. 9:1412–1421, 2004.

    Article  PubMed  CAS  Google Scholar 

  42. Prendiville, E. J., J. E. Coleman, A. D. Callow, K. E. Gould, S. Laliberte-Verdon, K. Ramberg, and R. J. Connolly. Increased in vitro incubation time of endothelial cells on fibronectin-treated ePTFE increases cell retention in blood flow. Eur. J. Vasc. Surg. 5:311–319, 1991.

    Article  PubMed  CAS  Google Scholar 

  43. Remy-Zolghadri, M., J. Laganiere, J. F. Oligny, L. Germain, and F. A. Auger. Endothelium properties of a tissue-engineered blood vessel for small-diameter vascular reconstruction. J. Vasc. Surg. 39:613–620, 2004.

    Article  PubMed  Google Scholar 

  44. Ross, J. J., and R. T. Tranquillo. ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol. 22:477–490, 2003.

    Article  PubMed  CAS  Google Scholar 

  45. Rubanyi, G. M. The role of endothelium in cardiovascular homeostasis and diseases. J. Cardiovasc. Pharmacol. 22 Suppl. 4:S1–S14, 1993.

    Article  PubMed  CAS  Google Scholar 

  46. Salacinski, H. J., S. Goldner, A. Giudiceandrea, G. Hamilton, A. M. Seifalian, A. Edwards, and R. J. Carson. The mechanical behavior of vascular grafts: a review. J. Biomater. Appl. 15:241–278, 2001.

    Article  PubMed  CAS  Google Scholar 

  47. Schmedlen, R. H., W. M. Elbjeirami, A. S. Gobin, and J. L. West. Tissue engineered small-diameter vascular grafts. Clin. Plast. Surg. 30:507–517, 2003.

    Article  PubMed  Google Scholar 

  48. Schneider, A., M. Chandra, G. Lazarovici, I. Vlodavsky, G. Merin, G. Uretzky, J. B. Borman, and H. Schwalb. Naturally produced extracellular matrix is an excellent substrate for canine endothelial cell proliferation and resistance to shear stress on PTFE vascular grafts. Thromb. Haemost. 78:1392–1398, 1997.

    PubMed  CAS  Google Scholar 

  49. Schneider, P. A., S. R. Hansen, T. M. Price, and L. A. Harker. Preformed confluent endothelial cell monolayers prevent early platelet deposition on vascular prostheses in baboons. J. Vasc. Surg. 8:229–235, 1988.

    Article  PubMed  CAS  Google Scholar 

  50. Seeger, J. M., and N. Klingman. Improved in vivo endothelialization of prosthetic grafts by surface modification with fibronectin. J. Vasc. Surg. 8:476–482, 1988.

    Article  PubMed  CAS  Google Scholar 

  51. Sharefkin, J. B., S. L. Diamond, S. G. Eskin, L. V. McIntire, and C. W. Dieffenbach. Fluid flow decreases preproendothelin mRNA levels and suppresses endothelin-1 peptide release in cultured human endothelial cells. J. Vasc. Surg. 14:1–9, 1991.

    Article  PubMed  CAS  Google Scholar 

  52. Swartz, D. D., J. A. Russell, and S. T. Andreadis. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am. J. Physiol. Heart. Circ. Physiol. 288:H1451–H1460, 2005.

    Article  PubMed  CAS  Google Scholar 

  53. Teebken, O. E., and A. Haverich. Tissue engineering of small diameter vascular grafts. Eur. J. Vasc. Endovasc. Surg. 23:475–485, 2002.

    Article  PubMed  Google Scholar 

  54. Tranquillo, R. T. The tissue-engineered small-diameter artery. Ann. N. Y. Acad. Sci. 961:251–254, 2002.

    Article  PubMed  Google Scholar 

  55. Traub, O., and B. C. Berk. Laminar shear stress: mechanisms by which endothelial cells transduce an antheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998.

    PubMed  CAS  Google Scholar 

  56. van Wachem, P. B., J. W. Stronck, R. Koers-Zuideveld, F. Dijk, and C. R. Wildevuur. Vacuum cell seeding: a new method for the fast application of an evenly distributed cell layer on porous vascular grafts. Biomater. 11:602–606, 1990.

    Article  PubMed  CAS  Google Scholar 

  57. Vohra, R. K., G. J. Thompson, H. Sharma, H. M. Carr, and M. G. Walker. Fibronectin coating of expanded polytetrafluoroethylene (ePTFE) grafts and its role in endothelial seeding. Artif. Organs. 14:41–45, 1990.

    Article  PubMed  CAS  Google Scholar 

  58. Vohra, R. K., G. J. Thomson, H. Sharma, H. M. Carr, and M. G. Walker. Effects of shear stress on endothelial cell monolayers on expanded polytetrafluoroethylene (ePTFE) grafts using preclot and fibronectin matrices. Eur. J. Vasc. Surg. 4:33–41, 1990.

    Article  PubMed  CAS  Google Scholar 

  59. Welch, M., D. Durrans, H. M. Carr, R. Vohra, O. B. Rooney, and M. G. Walker. Endothelial cell seeding: a review. Ann. Vasc. Surg. 6:473–484, 1992.

    Article  PubMed  CAS  Google Scholar 

  60. Williams, S. K. Endothelial cell transplantation. Cell Transplant 4:401–410, 1995.

    Article  PubMed  CAS  Google Scholar 

  61. Williams, S. K., D. G. Rose, and B. E. Jarrell. Microvascular endothelial cell sodding of ePTFE vascular grafts: improved patency and stability of the cellular lining. J. Biomed. Mater. Res. 28:203–212, 1994.

    Article  PubMed  CAS  Google Scholar 

  62. Wolf, S., and N. Werthessen. Dynamics of Arterial Flow. New York: Plenum Press, 1979. 472.

    Google Scholar 

  63. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.

    PubMed  CAS  Google Scholar 

  64. Womersley, J. R. Oscillatory motion of a viscous liquid in a thin-walled elastic tube: I. The linear approximation for long waves. Philosophical Magazine 46:199–221, 1955.

    Google Scholar 

  65. Womersley, J. R. Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys. Med. Biol. 2:178–187, 1957.

    Article  PubMed  CAS  Google Scholar 

  66. Xiao, L., and D. Shi. Role of precoating in artificial vessel endothelialization. Chin. J. Traumatol. 7:312–316, 2004.

    PubMed  CAS  Google Scholar 

  67. Ziegler, T., K. Bouzourene, V. J. Harrison, H. R. Brunner, and D. Hayoz. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18:686–692, 1998.

    PubMed  CAS  Google Scholar 

  68. Zilla, P., R. Fasol, P. Preiss, M. Kadletz, M. Deutsch, H. Schima, S. Tsangaris, and P. Groscurth. Use of fibrin glue as a substrate for in vitro endothelialization of PTFE vascular grafts. Surgery 105:515–522, 1989.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by NHLBI HL60495 (R.T.T.). Deborah Cocking-Johnson and Dr. Ginés Escolar performed the Baumgartner assay and the sample analysis, respectively. The technical assistance of Sandra Johnson, Naomi Ferguson, and Diane Tobolt is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Tranquillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isenberg, B.C., Williams, C. & Tranquillo, R.T. Endothelialization and Flow Conditioning of Fibrin-Based Media-Equivalents. Ann Biomed Eng 34, 971–985 (2006). https://doi.org/10.1007/s10439-006-9101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9101-0

Keywords

Navigation