Skip to main content

Function and Regulation of Agrobacterium tumefaciens Cell Surface Structures that Promote Attachment

  • Chapter
  • First Online:
Agrobacterium Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

Agrobacterium tumefaciens attaches stably to plant host tissues and abiotic surfaces. During pathogenesis, physical attachment to the site of infection is a prerequisite to infection and horizontal gene transfer to the plant. Virulent and avirulent strains may also attach to plant tissue in more benign plant associations, and as with other soil microbes, to soil surfaces in the terrestrial environment. Although most A. tumefaciens virulence functions are encoded on the tumor-inducing plasmid, genes that direct general surface attachment are chromosomally encoded, and thus this process is not obligatorily tied to virulence, but is a more fundamental capacity. Several different cellular structures are known or suspected to contribute to the attachment process. The flagella influence surface attachment primarily via their propulsive activity, but control of their rotation during the transition to the attached state may be quite complex. A. tumefaciens produces several pili, including the Tad-type Ctp pili, and several plasmid-borne conjugal pili encoded by the Ti and At plasmids, as well as the so-called T-pilus, involved in interkingdom horizontal gene transfer. The Ctp pili promote reversible interactions with surfaces, whereas the conjugal and T-pili drive horizontal gene transfer (HGT) interactions with other cells and tissues. The T-pilus is likely to contribute to physical association with plant tissues during DNA transfer to plants. A. tumefaciens can synthesize a variety of polysaccharides including cellulose, curdlan (β-1,3 glucan), β-1,2 glucan (cyclic and linear), succinoglycan, and a localized polysaccharide(s) that is confined to a single cellular pole and is called the unipolar polysaccharide (UPP). Lipopolysaccharides are also in the outer leaflet of the outer membrane. Cellulose and curdlan production can influence attachment under certain conditions. The UPP is required for stable attachment under a range of conditions and on abiotic and biotic surfaces. Other factors that have been reported to play a role in attachment include the elusive protein called rhicadhesin. The process of surface attachment is under extensive regulatory control and can be modulated by environmental conditions, as well as by direct responses to surface contact. Complex transcriptional and post-transcriptional control circuitry underlies much of the production and deployment of these attachment functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar J, Cameron TA, Zupan J, et al (2011) Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells. MBio 2:e00218-11

    Google Scholar 

  • Aldridge P, Hughes KT (2002) Regulation of flagellar assembly. Curr Opin Microbiol 5:160–165

    Article  CAS  PubMed  Google Scholar 

  • Aly KA, Baron C (2007) The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153:3766–3775

    Article  CAS  PubMed  Google Scholar 

  • Amikam D, Benziman M (1989) Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 171:6649–6655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arioli T, Peng L, Betzner AS et al (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    Article  CAS  PubMed  Google Scholar 

  • Ashby AM, Watson MD, Loake GJ et al (1988) Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170:4181–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausmees N, Jacobsson K, Lindberg M (2001) A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii. Microbiology 147:549–559

    Article  CAS  PubMed  Google Scholar 

  • Babić A, Lindner AB, Vulić M et al (2008) Direct visualization of horizontal gene transfer. Science 319:1533–1536

    Article  PubMed  CAS  Google Scholar 

  • Barbosa RL, Benedetti CE (2007) BigR, a transcriptional repressor from plant associated bacteria, regulates an operon implicated in biofilm growth. J Bacteriol 189:6185–6194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnhart MM, Chapman MR (2006) Curdlan biogenesis and function. Annu Rev Microbiol 60:131–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnhart DM, Su S, Baccaro BE et al (2013) CelR, an ortholog of the diguanylate cyclase PleD of Caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 79:7188–7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnhart DM, Su S, Farrand SK (2014) A signaling pathway involving the diguanylate cyclase CelR and the response regulator DivK controls cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 196:1257–1274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berne C, Ducret A, Hardy GG et al (2015) Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microbiol Spectr 3

    Google Scholar 

  • Blair DF (2003) Flagellar movement driven by proton translocation. FEBS Lett 545:86–95

    Article  CAS  PubMed  Google Scholar 

  • Blanco LP, Evans ML, Smith DR et al (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73

    Article  CAS  PubMed  Google Scholar 

  • Bodenmiller D, Toh E, Brun YV (2004) Development of surface adhesion in Caulobacter crescentus. J Bacteriol 186:1438–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branch RW, Sayegh MN, Shen C, Nathan VSJ, Berg HC (2014) Adaptive remodeling by FliN in the bacterial rotary motor. J Mol Biol 426:3314–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branda SS, Vik Å, Friedman L et al (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  PubMed  Google Scholar 

  • Brown PJ, de Pedro MA, Kysela DT et al (2012) Polar growth in the Alphaproteobacterial order Rhizobiales. Proc Natl Acad Sci USA 109:1697–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Chen Y, Wood DW et al (2002) A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J Bacteriol 184:4838–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesnokova O, Coutinho JB, Khan IH et al (1997) Characterization of flagella genes of Agrobacterium tumefaciens, and the effect of a bald strain on virulence. Mol Microbiol 23:579–590

    Article  CAS  PubMed  Google Scholar 

  • Chevance FF, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole JL, Hardy GG, Bodenmiller D et al (2003) The HfaB and HfaD adhesion proteins of Caulobacter crescentus are localized in the stalk. Mol Microbiol 49:1671–1683

    Article  CAS  PubMed  Google Scholar 

  • Cook DM, Li PL, Ruchaud F et al (1997) Ti plasmid conjugation is independent of vir: reconstitution of the tra functions from pTiC58 as a binary system. J Bacteriol 179:1291–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa TR, Ilangovan A, Ukleja M et al (2016) Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166:1436–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuthbertson L, Mainprize IL, Naismith JH et al (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol R 73:155–177

    Article  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  • Danhorn T, Hentzer M, Givskov M et al (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 186:4492–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dardanelli M, Angelini J, Fabra A (2003) A calcium-dependent bacterial surface protein is involved in the attachment of rhizobia to peanut roots. Can J Microbiol 49:399–405

    Article  CAS  PubMed  Google Scholar 

  • Deakin WJ, Parker VE, Wright EL et al (1999) Agrobacterium tumefaciens possesses a fourth flagellin gene located in a large gene cluster concerned with flagellar structure, assembly and motility. Microbiology 145:1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Deakin WJ, Furniss CS, Parker VE et al (1997a) Isolation and characterisation of a linked cluster of genes from Agrobacterium tumefaciens encoding proteins involved in flagellar basal-body structure. Gene 189:135–137

    Article  CAS  PubMed  Google Scholar 

  • Deakin WJ, Sanderson JL, Goswami T et al (1997b) The Agrobacterium tumefaciens motor gene, motA, is in a linked cluster with the flagellar switch protein genes, fliG, fliM and fliN. Gene 189:139–141

    Article  CAS  PubMed  Google Scholar 

  • Deinema MH, Zevenhuizen LPTM (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Microbiol 78:42–57

    CAS  Google Scholar 

  • DeRosier D (2006) Bacterial flagellum: visualizing the complete machine in situ. Curr Biol 16:R928–R930

    Article  CAS  PubMed  Google Scholar 

  • Ellison CK, Kan J, Dillard RS et al (2017) Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358:535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feirer N, Fuqua C (2017) Pterin function in bacteria. Pteridines 28:23–36

    Article  CAS  Google Scholar 

  • Feirer N, Kim D, Xu J et al (2017) The Agrobacterium tumefaciens CheY-like protein ClaR regulates biofilm formation. Microbiology 163:1680–1691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feirer N, Xu J, Allen KD et al (2015) A pterin-dependent signaling pathway regulates a dual-function diguanylate cyclase-phosphodiesterase controlling surface attachment in Agrobacterium tumefaciens. MBio 6:e00156-15

    Google Scholar 

  • Ferooz J, Lemaire J, Letesson JJ (2011) Role of FlbT in flagellin production in Brucella melitensis. Microbiology 157:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Fiebig A, Herrou J, Fumeaux C et al (2014) A cell cycle and nutritional checkpoint controlling bacterial surface adhesion. PLoS Genet 10:e1004101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fritts RK, LaSarre B, Stoner AM et al (2017) A Rhizobiales-specific unipolar polysaccharide adhesin contributes to Rhodopseudomonas palustris biofilm formation across diverse photoheterotrophic conditions. Appl Environ Microbiol 83:e03035–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Fullner KJ, Lara JC, Nester EW (1996) Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273:1107-1109

    Article  CAS  PubMed  Google Scholar 

  • Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghigo JM (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442

    Article  CAS  PubMed  Google Scholar 

  • Goodner B, Hinkle G, Gattung S et al (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328

    Article  CAS  PubMed  Google Scholar 

  • Götz R, Limmer N, Ober K et al (1982) Motility and chemotaxis in two strains of Rhizobium with complex flagella. Microbiology 128:789–798

    Article  Google Scholar 

  • Gu X, Lee SG, Bar-Peled M (2011) Biosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase. Microbiology 157:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimarães BG, Barbosa RL, Soprano AS et al (2011) Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia. J Biol Chem 286:26148–26157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy GG, Allen RC, Toh E et al (2010) A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole. Mol Microbiol 76:409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy GG, Toh E, Berne C et al (2018) Mutations in sugar-nucleotide synthesis genes restore holdfast polysaccharide anchoring to Caulobacter crescentus holdfast anchor mutants. J Bacteriol 200:e00597–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckel BC, Tomlinson AD, Morton ER et al (2014) Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression. J Bacteriol 196:3221–3233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heindl JE, Hibbing ME, Xu J et al (2016) Discrete responses to limitation for iron and manganese in Agrobacterium tumefaciens: influence on attachment and biofilm formation. J Bacteriol 198:816–829

    Article  CAS  PubMed Central  Google Scholar 

  • Heindl JE, Wang Y, Heckel BC et al (2014) Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Front Plant Sci 5:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinsa SM, Espinosa-Urgel M, Ramos JL et al (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918

    Article  CAS  PubMed  Google Scholar 

  • Høiby N (2017) A short history of microbial biofilms and biofilm infections. APMIS 125:272–275

    Article  PubMed  Google Scholar 

  • Hong Y, Reeves PR (2014) Diversity of O-antigen repeat unit structures can account for the substantial sequence variation of Wzx translocases. J Bacteriol 196:1713–1722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hug I, Deshpande S, Sprecher KS et al (2017) Second messenger–mediated tactile response by a bacterial rotary motor. Science 358:531–534

    Article  CAS  PubMed  Google Scholar 

  • Hughes KT, Mathee K (1998) The anti-sigma factors. Annu Rev Microbiol 52:231–286

    Article  CAS  PubMed  Google Scholar 

  • Islam ST, Lam JS (2013) Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ Microbiol 15:1001–1015

    Article  CAS  PubMed  Google Scholar 

  • Islam ST, Lam JS (2014) Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol 60:697–716

    Article  CAS  PubMed  Google Scholar 

  • Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271

    Article  CAS  PubMed  Google Scholar 

  • Judd PK, Kumar RB, Das A (2005) The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 55:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kachlany SC, Planet PJ, DeSalle R et al (2001) flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. Mol Microbiol 40:542–554

    Article  CAS  PubMed  Google Scholar 

  • Kai-Larsen Y, Lüthje P, Chromek M et al (2010) Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6:e1001010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalynych S, Morona R, Cygler M (2014) Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiol Rev 38:1048–1065

    Article  CAS  PubMed  Google Scholar 

  • Karnezis T, Epa VC, Stone BA et al (2003) Topological characterization of an inner membrane (1→3)-β-d-glucan (curdlan) synthase from Agrobacterium sp. strain ATCC31749. Glycobiology 13:693–706

    Article  CAS  PubMed  Google Scholar 

  • Karnezis T, Fisher HC, Neumann GM et al (2002) Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1→3)-β-d-glucan (curdlan). J Bacteriol 184:4114–4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilmury SL, Burrows LL (2016) Type IV pilins regulate their own expression via direct intramembrane interactions with the sensor kinase PilS. PNAS 113:6017–6022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Heindl JE, Fuqua C (2013) Coordination of division and development influences complex multicellular behavior in Agrobacterium tumefaciens. PLoS ONE 8:e56682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura S, Chen HP, Saxena IM et al (2001) Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. J Bacteriol 183:5668–5674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Körner H, Sofia HJ, Zumft WG (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27:559–592

    Article  PubMed  CAS  Google Scholar 

  • Lai EM, Chesnokova O, Banta LM et al (2000) Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol 182:3705–3716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai EM, Eisenbrandt R, Kalkum M et al (2002) Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 184:327–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laus MC, Logman TJ, Lamers GE et al (2006) A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 59:1704–1713

    Article  CAS  PubMed  Google Scholar 

  • Leifson E, Erdman LW (1958) Flagellar characteristics of Rhizobium species. A van Leeuw J Microb 24:97–110

    Article  CAS  Google Scholar 

  • Lele PP, Branch RW, Nathan VJS, Berg HC (2012) Mechanism for remodeling of the bacterial flagellar switch. Proc Natl Acad Sci USA 109:20018–20022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lessl M, Lanka E (1994) Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell 77:321–324

    Article  CAS  PubMed  Google Scholar 

  • Li G, Brown PJ, Tang JX et al (2012) Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol Microbiol 83:41–51

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Ochman H (2007) Origins of flagellar gene operons and secondary flagellar systems. J Bacteriol 189:7098–7104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locht C, Berlin P, Menozzi FD et al (1993) The filamentous haemagglutinin, a multifaceted adhesin produced by virulent Bordetella spp. Mol Microbiol 9:653–660

    Article  CAS  PubMed  Google Scholar 

  • Madsen JS, Burmølle M, Hansen LH et al (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Mic 65:183–195

    Article  CAS  Google Scholar 

  • Mangan EK, Malakooti J, Caballero A et al (1999) FlbT couples flagellum assembly to gene expression in Caulobacter crescentus. J Bacteriol 181:6160–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthysse AG (1983) Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154:906–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthysse AG (1987) Characterization of nonattaching mutants of Agrobacterium tumefaciens. J Bacteriol 169:313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthysse AG (2014) Attachment of Agrobacterium to plant surfaces. Front Plant Sci 5:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthysse AG, Holmes KV, Gurlitz RH (1981) Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145:583–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthysse AG, Jaeckel P, Jeter C (2008) attG and attC mutations of Agrobacterium tumefaciens are dominant negative mutations that block attachment and virulence. Can J Microbiol 54:241–247

    Article  CAS  PubMed  Google Scholar 

  • Matthysse AG, Marry M, Krall L et al (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant Microbe Interac 18:1002–1010

    Article  CAS  Google Scholar 

  • Matthysse AG, Thomas DL, White AR (1995a) Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1076–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthysse AG, White S, Lightfoot R (1995b) Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthysse AG, Yarnall H, Boles SB et al (2000) A region of the Agrobacterium tumefaciens chromosome containing genes required for virulence and attachment to host cells. Biophys Biochi. Acta 1490:208–212

    Article  CAS  Google Scholar 

  • Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314

    Article  CAS  PubMed  Google Scholar 

  • McDermott TR (2000) Phosphorus assimilation and regulation in the rhizobia. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Norfolk, United Kingdom, pp 529–548

    Google Scholar 

  • McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1→3)-β-d-glucans. Appl Microbiol Biotech 68:163–173

    Article  CAS  Google Scholar 

  • Macnab RM (1996) Flagella and motility. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington DC, pp 123–145

    Google Scholar 

  • Meadows PS (1971) The attachment of bacteria to solid surfaces. Arch Microbiol 75:374–381

    CAS  Google Scholar 

  • Merritt PM, Danhorn T, Fuqua C (2007) Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol 189:8005–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi W, Li Y, Yoon SH et al (2017) Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549:233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohari B, Licata NA, Kysela DT et al (2015) Novel pseudotaxis mechanisms improve migration of straight-swimming bacterial mutants through a porous environment. MBio 6:e00005-15

    Google Scholar 

  • Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181

    Article  CAS  PubMed  Google Scholar 

  • Nair GR, Liu Z, Binns AN (2003) Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. Plant Physiol 133:989–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi I, Kimura K, Suzuki T et al (1976) Demonstration of curdlan-type polysaccharide and some other β-1, 3-glucan in microorganisms with aniline blue. J Gen Appl Microbiol 22:1–11

    Article  CAS  Google Scholar 

  • Oberpichler I, Rosen R, Rasouly A et al (2008) Light affects motility and infectivity of Agrobacterium tumefaciens. Environ Microbiol 10:2020–2029

    Article  CAS  PubMed  Google Scholar 

  • Osterman IA, Dikhtyar YY, Bogdanov AA et al (2015) Regulation of flagellar gene expression in bacteria. Biochemistry (Moscow) 80:1447–1456

    Article  CAS  Google Scholar 

  • Pallen MJ, Matzke NJ (2006) from the origin of species to the origin of bacterial flagella. Nat Rev Microbiol 4:784

    Article  CAS  PubMed  Google Scholar 

  • Paul R, Weiser S, Amiot NC et al (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Gene Dev 18:715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piper KR, Beck von Bodman S, Farrand SK (1993) Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–450

    Article  CAS  PubMed  Google Scholar 

  • Ramey BE, Matthysse AG, Fuqua C (2004) The FNR-type transcriptional regulator SinR controls maturation of Agrobacterium tumefaciens biofilms. Mol Microbiol 52:1495–1511

    Article  CAS  PubMed  Google Scholar 

  • Reuber TL, Walker GC (1993) Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 74:269–280

    Article  CAS  PubMed  Google Scholar 

  • Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212

    Article  PubMed  Google Scholar 

  • Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinbergerohana P, Mayer R, Braun S, Devroom E, Vandermarel GA, Vanboom JH, Benziman M (1987) Regulation of cellulose synthase in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281

    Article  CAS  PubMed  Google Scholar 

  • Rotter C, Mühlbacher S, Salamon D et al (2006) Rem, a new transcriptional activator of motility and chemotaxis in Sinorhizobium meliloti. J Bacteriol 188:6932–6942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffing AM, Castro-Melchor M, Hu WS et al (2011) Genome sequence of the curdlan-producing Agrobacterium sp. strain ATCC 31749. J Bacteriol 193:4294–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffing AM, Chen RR (2012) Transcriptome profiling of a curdlan-producing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis. Microb Cell Fact 11:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo DM, Williams A, Edwards A et al (2006) Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J Bacteriol 188:4474–4486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schäper S, Krol E, Skotnicka D et al (2016) Cyclic di-GMP regulates multiple cellular functions in the symbiotic alphaproteobacterium Sinorhizobium meliloti. J Bacteriol 198:521–535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuhmacher JS, Thormann KM, Bange G (2015) How bacteria maintain location and number of flagella? FEMS Microbiol Rev 39:812–822

    Article  CAS  PubMed  Google Scholar 

  • Shaw CH, Loake GJ, Brown AP et al (1991) Isolation and characterization of behavioural mutants and genes of Agrobacterium tumefaciens. Microbiology 137:1939–1953

    CAS  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioproc E 10:1

    Article  CAS  Google Scholar 

  • Skerker JM, Shapiro L (2000) Identification and cell cycle control of a novel pilus system in Caulobacter crescentus. EMBO J 19:3223–3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smit G, Logman TJ, Boerrigter ME et al (1989) Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+-dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips. J Bacteriol 171:4054–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer JM, Newton A (1989) Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus. J Bacteriol 171:392–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sourjik V, Muschler P, Scharf B, Schmitt R (2000) VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J Bacteriol 182:782–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sourjik V, Schmitt R (1996) Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol Microbiol 22:427–436

    Article  CAS  PubMed  Google Scholar 

  • Stasinopoulos SJ, Fisher PR, Stone BA et al (1999) Detection of two loci involved in (1→3)-β-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene. Glycobiol 9:31–41

    Article  CAS  Google Scholar 

  • Toh E, Kurtz HD, Brun YV (2008) Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps. J Bacteriol 190:7219–7231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomich M, Planet PJ, Figurski DH (2007) The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5:363

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson AD, Fuqua C (2009) Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Curr Opin Microbiol 12:708–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson AD, Ramey-Hartung B, Day TW et al (2010) Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. Microbiology 156:2670–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visick KL, Schembri MA, Yildiz F et al (2016) Biofilms 2015: multidisciplinary approaches shed light into microbial life on surfaces. J Bacteriol 198:2553–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037

    Article  CAS  PubMed  Google Scholar 

  • Wan Z, Brown PJ, Elliott EN, Brun YV (2013) The adhesive and cohesive properties of a bacterial polysaccharide adhesin are modulated by a deacetylase. Mol Microbiol 88:486–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Haitjema CH, Fuqua C (2014) The Ctp type IVb pilus locus of Agrobacterium tumefaciens directs formation of the common pili and contributes to reversible surface attachment. J Bacteriol 196:2979–2988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Kim SH, Natarajan R et al (2016) Spermidine inversely influences surface interactions and planktonic growth in Agrobacterium tumefaciens. J Bacteriol 198:2682–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yang F, von Bodman SB (2012) The genetic and structural basis of two distinct terminal side branch residues in stewartan and amylovoran exopolysaccharides and their potential role in host adaptation. Mol Microbiol 83:195–207

    Article  CAS  PubMed  Google Scholar 

  • Williamson RE, Burn JE, Hocart CH (2002) Towards the mechanism of cellulose synthesis. Trends Plant Sci 7:461–467

    Article  CAS  PubMed  Google Scholar 

  • Wolfe AJ, Visick KL (eds) (2010) The second messenger cyclic di-GMP. ASM Press, USA

    Google Scholar 

  • Wood DW, Setubal JC, Kaul R et al (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323

    Article  CAS  PubMed  Google Scholar 

  • Wu CF, Lin JS, Shaw GC et al (2012) Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog 8:e1002938

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Kim J, Danhorn T et al (2012) Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Res Microbiol 163:674–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Kim J, Koestler BJ et al (2013) Genetic analysis of Agrobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile-to-sessile switch. Mol Microbiol 89:929–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Zhang C, Yang L et al (2015) CrdR function in a curdlan-producing Agrobacterium sp. ATCC31749 strain. BMC Microbiol 15:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zatakia HM, Arapov TD, Meier VM et al (2018) Cellular stoichiometry of methyl-accepting chemotaxis proteins in Sinorhizobium meliloti. J Bacteriol 200:e00614–e00617

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan XB, Lin CC, Zhang HT (2012) Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl Microbiol Biotechnol 93:525–531

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Nam J, Humara JM et al (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132:494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research on surface attachment functions for A. tumefaciens in the Fuqua lab is supported by the National Institutes of Health GM120337. We thank Justin Eagan for his comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clay Fuqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thompson, M.A., Onyeziri, M.C., Fuqua, C. (2018). Function and Regulation of Agrobacterium tumefaciens Cell Surface Structures that Promote Attachment. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_96

Download citation

Publish with us

Policies and ethics