Skip to main content

Inflammation Effects on Brain Glutamate in Depression: Mechanistic Considerations and Treatment Implications

  • Chapter
  • First Online:
Inflammation-Associated Depression: Evidence, Mechanisms and Implications

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 31))

Abstract

There has been increasing interest in the role of glutamate in mood disorders, especially given the profound effect of the glutamate receptor antagonist ketamine in improving depressive symptoms in patients with treatment-resistant depression. One pathway by which glutamate alterations may occur in mood disorders involves inflammation. Increased inflammation has been observed in a significant subgroup of patients with mood disorders, and inflammatory cytokines have been shown to influence glutamate metabolism through effects on astrocytes and microglia. In addition, the administration of the inflammatory cytokine interferon-alpha has been shown to increase brain glutamate in the basal ganglia and dorsal anterior cingulate cortex as measured by magnetic resonance spectroscopy (MRS). Moreover, MRS studies in patients with major depressive disorder have revealed that increased markers of inflammation including C-reactive protein correlate with increased basal ganglia glutamate, which in turn was associated with anhedonia and psychomotor retardation. Finally, human and laboratory animal studies have shown that the response to glutamate antagonists such as ketamine is predicted by increased inflammatory cytokines. Taken together, these data make a strong case that inflammation may influence glutamate metabolism to alter behavior, leading to depressive symptoms including anhedonia and psychomotor slowing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CDC (2015) Suicide - facts at a glance 2015. Centers for Disease Control, Atlanta, GA, USA

    Google Scholar 

  2. Pratt LA, Brody DJ (2014) Depression in the U.S. Household Population, 2009–2012. NCHS Data Brief #172. National Center for Health Statistics, Haysviille, MD

    Google Scholar 

  3. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163(11):1905–1917. doi:10.1176/appi.ajp.163.11.1905

    Article  PubMed  Google Scholar 

  4. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. doi:10.1038/nrn2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dantzer R, Walker A (2014) Is there a role for glutamate-mediated excitotoxicity in inflammation-induced depression? J Neural Transm. doi:10.1007/s00702-014-1187-1

    PubMed  PubMed Central  Google Scholar 

  6. Duman RS (2014) Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci 16(1):11–27

    PubMed  PubMed Central  Google Scholar 

  7. Hodes GE, Kana V, Menard C, Merad M, Russo SJ (2015) Neuroimmune mechanisms of depression. Nat Neurosci 18(10):1386–1393. doi:10.1038/nn.4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent A, Zarate CA (2016) Glutamate and GABA systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry. doi:10.1016/j.biopsych.2016.05.005

    PubMed  Google Scholar 

  9. Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1):22–34. doi:10.1038/nri.2015.5

    Article  CAS  PubMed  Google Scholar 

  10. Sanacora G, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7(5):426–437. doi:10.1038/nrd2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zarate C Jr, Machado-Vieira R, Henter I, Ibrahim L, Diazgranados N, Salvadore G (2010) Glutamatergic modulators: the future of treating mood disorders? Harv Rev Psychiatry 18(5):293–303. doi:10.3109/10673229.2010.511059

    Google Scholar 

  12. Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, Hu XP, Miller AH (2016) Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry. doi:10.1038/mp.2015.206

    PubMed Central  Google Scholar 

  13. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741. doi:10.1016/j.biopsych.2008.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457. doi:10.1016/j.biopsych.2009.09.033

    Article  CAS  PubMed  Google Scholar 

  15. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M (2015) Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. doi:10.1016/j.bbi.2015.06.001

    PubMed  PubMed Central  Google Scholar 

  16. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71(2):171–186. doi:10.1097/PSY.0b013e3181907c1b

    Article  CAS  PubMed  Google Scholar 

  17. Bufalino C, Hepgul N, Aguglia E, Pariante CM (2012) The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav Immun. doi:10.1016/j.bbi.2012.04.009

    PubMed  Google Scholar 

  18. Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ, Craig IW, Anacker C, Zunsztain PA, McGuffin P, Pariante CM (2013) Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology 38(3):377–385. doi:10.1038/npp.2012.191

    Article  CAS  PubMed  Google Scholar 

  19. Sluzewska A, Sobieska M, Rybakowski JK (1997) Changes in acute-phase proteins during lithium potentiation of antidepressants in refractory depression. Neuropsychobiology 35(3):123–127

    Article  CAS  PubMed  Google Scholar 

  20. Raison CL, Felger JC, Miller AH (2013) Inflammation and treatment resistance in major depression: a perfect storm. Psychiatric Times, September 12

    Google Scholar 

  21. Felger JC, Li L, Marvar PJ, Woolwine BJ, Harrison DG, Raison CL, Miller AH (2013) Tyrosine metabolism during interferon-alpha administration: association with fatigue and CSF dopamine concentrations. Brain Behav Immun 31:153–160. doi:10.1016/j.bbi.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  22. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H (2000) Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 22(4):370–379. doi:10.1016/s0893-133x(99)00134-7

    Article  CAS  PubMed  Google Scholar 

  23. Strawbridge R, Arnone D, Danese A, Papadopoulos A, Herane Vives A, Cleare AJ (2015) Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol 25(10):1532–1543. doi:10.1016/j.euroneuro.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  24. Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB, Miller AH (2002) Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 26(5):643–652

    Article  CAS  PubMed  Google Scholar 

  25. Constant A, Castera L, Dantzer R, Couzigou P, de Ledinghen V, Demotes-Mainard J, Henry C (2005) Mood alterations during interferon-alfa therapy in patients with chronic hepatitis C: evidence for an overlap between manic/hypomanic and depressive symptoms. J Clin Psychiatry 66(8):1050–1057

    Article  CAS  PubMed  Google Scholar 

  26. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68(8):748–754. doi:10.1016/j.biopsych.2010.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eisenberger NI, Inagaki TK, Mashal NM, Irwin MR (2010) Inflammation and social experience: an inflammatory challenge induces feelings of social disconnection in addition to depressed mood. Brain Behav Immun 24(4):558–563. doi:10.1016/j.bbi.2009.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  28. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD (2009) Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 66:407–414. doi:10.1016/j.biopsych.2009.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  29. Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR, Nemeroff CB, Bremner JD, Carney RM, Coyne JC, Delong MR, Frasure-Smith N, Glassman AH, Gold PW, Grant I, Gwyther L, Ironson G, Johnson RL, Kanner AM, Katon WJ, Kaufmann PG, Keefe FJ, Ketter T, Laughren TP, Leserman J, Lyketsos CG, McDonald WM, McEwen BS, Miller AH, Musselman D, O’Connor C, Petitto JM, Pollock BG, Robinson RG, Roose SP, Rowland J, Sheline Y, Sheps DS, Simon G, Spiegel D, Stunkard A, Sunderland T, Tibbits P Jr, Valvo WJ (2005) Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry 58(3):175–189. doi:10.1016/j.biopsych.2005.05.001

    Google Scholar 

  30. Kohler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, Krogh J (2014) Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 71(12):1381–1391. doi:10.1001/jamapsychiatry.2014.1611

    Article  PubMed  Google Scholar 

  31. Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S (2012) Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord 141(2–3):308–314. doi:10.1016/j.jad.2012.03.033

    Article  CAS  PubMed  Google Scholar 

  32. Akhondzadeh S, Jafari S, Raisi F, Nasehi AA, Ghoreishi A, Salehi B, Mohebbi-Rasa S, Raznahan M, Kamalipour A (2009) Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress Anxiety 26(7):607–611. doi:10.1002/da.20589

    Article  CAS  PubMed  Google Scholar 

  33. Hashemian F, Majd M, Hosseini SM, Sharifi A, Panahi MVS, Bigdeli O (2011) A randomized, double-blind, placebo-controlled trial of celecoxib augmentation of sertraline in the treatment of a drug-naive women with major depression. Klinik Psikofarmakoloji Bulteni 21:S183–S184

    Google Scholar 

  34. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Moller HJ, Arolt V, Riedel M (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11(7):680–684

    Article  CAS  PubMed  Google Scholar 

  35. Na KS, Lee KJ, Lee JS, Cho YS, Jung HY (2014) Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 48:79–85. doi:10.1016/j.pnpbp.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  36. Faridhosseini F, Sadeghi R, Farid L, Pourgholami M (2014) Celecoxib: a new augmentation strategy for depressive mood episodes. A systematic review and meta-analysis of randomized placebo-controlled trials. Hum Psychopharmacol 29(3):216–223. doi:10.1002/hup.2401

    Article  CAS  PubMed  Google Scholar 

  37. Miller AH, Raison CL (2015) Are anti-inflammatory therapies viable treatments for psychiatric disorders?: where the rubber meets the road. JAMA Psychiatry 72(6):527–528. doi:10.1001/jamapsychiatry.2015.22

    Article  PubMed  Google Scholar 

  38. Jansen JF, Backes WH, Nicolay K, Kooi ME (2006) 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 240(2):318–332. doi:10.1148/radiol.2402050314

    Article  PubMed  Google Scholar 

  39. Mason GF, Krystal JH (2006) MR spectroscopy: its potential role for drug development for the treatment of psychiatric diseases. NMR Biomed 19(6):690–701. doi:10.1002/nbm.1080

    Article  CAS  PubMed  Google Scholar 

  40. Moore CM, Frederick BB, Renshaw PF (1999) Brain biochemistry using magnetic resonance spectroscopy: relevance to psychiatric illness in the elderly. J Geriatr Psychiatry Neurol 12(3):107–117

    Article  CAS  PubMed  Google Scholar 

  41. Stagg CJ, Bestmann S, Constantinescu AO, Moreno LM, Allman C, Mekle R, Woolrich M, Near J, Johansen-Berg H, Rothwell JC (2011) Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J Physiol 589(Pt 23):5845–5855. doi:10.1113/jphysiol.2011.216978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tremblay S, Beaule V, Proulx S, de Beaumont L, Marjanska M, Doyon J, Pascual-Leone A, Lassonde M, Theoret H (2013) Relationship between transcranial magnetic stimulation measures of intracortical inhibition and spectroscopy measures of GABA and glutamate + glutamine. J Neurophysiol 109(5):1343–1349. doi:10.1152/jn.00704.2012

    Article  CAS  PubMed  Google Scholar 

  43. Yildiz-Yesiloglu A, Ankerst DP (2006) Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 147(1):1–25. doi:10.1016/j.pscychresns.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  44. Yuksel C, Ongur D (2010) Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 68(9):785–794. doi:10.1016/j.biopsych.2010.06.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rosenberg DR, Paulson ND, Seraji-Bozorgard N, Wilds IB, Stewart CM, Moore GJ (2000) Brain chemistry in pediatric depression. Biol Psychiatry 47:95S

    Google Scholar 

  46. Kondo DG, Hellem TL, Sung YH, Kim N, Jeong EK, Delmastro KK, Shi X, Renshaw PF (2011) Review: magnetic resonance spectroscopy studies of pediatric major depressive disorder. Depress Res Treat 2011:650450. doi:10.1155/2011/650450

    PubMed  Google Scholar 

  47. Luykx JJ, Laban KG, van den Heuvel MP, Boks MP, Mandl RC, Kahn RS, Bakker SC (2012) Region and state specific glutamate downregulation in major depressive disorder: a meta-analysis of (1)H-MRS findings. Neurosci Biobehav Rev 36(1):198–205. doi:10.1016/j.neubiorev.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  48. Arnone D, Mumuni AN, Jauhar S, Condon B, Cavanagh J (2015) Indirect evidence of selective glial involvement in glutamate-based mechanisms of mood regulation in depression: meta-analysis of absolute prefrontal neuro-metabolic concentrations. Eur Neuropsychopharmacol 25(8):1109–1117. doi:10.1016/j.euroneuro.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  49. Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B (2003) Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med 33(7):1277–1284

    Article  CAS  PubMed  Google Scholar 

  50. Pfleiderer B, Michael N, Erfurth A, Ohrmann P, Hohmann U, Wolgast M, Fiebich M, Arolt V, Heindel W (2003) Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res 122(3):185–192

    Article  CAS  PubMed  Google Scholar 

  51. Zhang J, Narr KL, Woods RP, Phillips OR, Alger JR, Espinoza RT (2013) Glutamate normalization with ECT treatment response in major depression. Mol Psychiatry 18(3):268–270. doi:10.1038/mp.2012.46

    Article  CAS  PubMed  Google Scholar 

  52. Taylor M, Murphy SE, Selvaraj S, Wylezinkska M, Jezzard P, Cowen PJ, Evans J (2008) Differential effects of citalopram and reboxetine on cortical Glx measured with proton MR spectroscopy. J Psychopharmacol 22(5):473–476. doi:10.1177/0269881107081510

    Article  CAS  PubMed  Google Scholar 

  53. Murck H, Schubert MI, Schmid D, Schussler P, Steiger A, Auer DP (2009) The glutamatergic system and its relation to the clinical effect of therapeutic-sleep deprivation in depression - an MR spectroscopy study. J Psychiatr Res 43(3):175–180. doi:10.1016/j.jpsychires.2008.04.009

    Article  PubMed  Google Scholar 

  54. Valentine GW, Mason GF, Gomez R, Fasula M, Watzl J, Pittman B, Krystal JH, Sanacora G (2011) The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [(1)H]-MRS. Psychiatry Res 191(2):122–127. doi:10.1016/j.pscychresns.2010.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Niciu MJ, Ionescu DF, Richards EM, CA Jr Z (2014) Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder. J Neural Transm 121(8):907–924. doi:10.1007/s00702-013-1130-x

    Article  CAS  PubMed  Google Scholar 

  56. Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, Kelley KW, Dantzer R (2013) NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6 J mice. Neuropsychopharmacology 38(9):1609–1616. doi:10.1038/npp.2013.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abdallah CG, Jiang L, De Feyter HM, Fasula M, Krystal JH, Rothman DL, Mason GF, Sanacora G (2014) Glutamate metabolism in major depressive disorder. Am J Psychiatry 171(12):1320–1327. doi:10.1176/appi.ajp.2014.14010067

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bluml S, Moreno-Torres A, Shic F, Nguy CH, Ross BD (2002) Tricarboxylic acid cycle of glia in the in vivo human brain. NMR Biomed 15(1):1–5

    Article  CAS  PubMed  Google Scholar 

  59. Gigante AD, Bond DJ, Lafer B, Lam RW, Young LT, Yatham LN (2012) Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord 14(5):478–487. doi:10.1111/j.1399-5618.2012.01033.x

    Article  CAS  PubMed  Google Scholar 

  60. Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ (2011) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 16(6):634–646. doi:10.1038/mp.2010.44

    Article  CAS  PubMed  Google Scholar 

  61. Ernst C, Mechawar N, Turecki G (2009) Suicide neurobiology. Prog Neurobiol 89(4):315–333. doi:10.1016/j.pneurobio.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  62. Ongur D, Bechtholt AJ, Carlezon WA Jr, Cohen BM (2014) Glial abnormalities in mood disorders. Harv Rev Psychiatry 22(6):334–337. doi:10.1097/HRP.0000000000000060

    Google Scholar 

  63. Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14(11):1225–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nagy C, Suderman M, Yang J, Szyf M, Mechawar N, Ernst C, Turecki G (2015) Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Mol Psychiatry 20(3):320–328. doi:10.1038/mp.2014.21

    Article  CAS  PubMed  Google Scholar 

  65. Torres-Platas SG, Hercher C, Davoli MA, Maussion G, Labonte B, Turecki G, Mechawar N (2011) Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology 36(13):2650–2658. doi:10.1038/npp.2011.154

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6(3):219–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45(9):1085–1098

    Article  CAS  PubMed  Google Scholar 

  68. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE, Jr., Akil H, Watson SJ, Jones EG (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci U S A 102 (43):15653–15658. doi:10.1073/pnas.0507901102

    Google Scholar 

  69. Barley K, Dracheva S, Byne W (2009) Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res 112(1–3):54–64. doi:10.1016/j.schres.2009.04.019

    Article  PubMed  Google Scholar 

  70. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, Rehal S, Klempan T, Gratton A, Benkelfat C, Rouleau GA, Mechawar N, Turecki G (2009) Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One 4(8):e6585. doi:10.1371/journal.pone.0006585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhang C, Li Z, Wu Z, Chen J, Wang Z, Peng D, Hong W, Yuan C, Wang Z, Yu S, Xu Y, Xu L, Xiao Z, Fang Y (2014) A study of N-methyl-D-aspartate receptor gene (GRIN2B) variants as predictors of treatment-resistant major depression. Psychopharmacology (Berl) 231(4):685–693. doi:10.1007/s00213-013-3297-0

    Article  CAS  Google Scholar 

  72. Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA Jr, Ongur D, Cohen BM (2010) Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 35(10):2049–2059. doi:10.1038/npp.2010.74

    Google Scholar 

  73. Popoli M, Yan Z, McEwen BS, Sanacora G (2012) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13(1):22–37. doi:10.1038/nrn3138

    CAS  Google Scholar 

  74. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105. doi:10.1016/s0301-0082(00)00067-8

    Article  CAS  PubMed  Google Scholar 

  75. Jabaudon D, Scanziani M, Gahwiler BH, Gerber U (2000) Acute decrease in net glutamate uptake during energy deprivation. Proc Natl Acad Sci U S A 97(10):5610–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Scanziani M, Gahwiler BH, Gerber U (1999) Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc Natl Acad Sci U S A 96(15):8733–8738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dantzer R, O’Connor JC, Lawson MA, Kelley KW (2011) Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 36(3):426–436. doi:10.1016/j.psyneuen.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  78. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P (2013) The cystine/glutamate antiporter system x(c)(−) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18(5):522–555. doi:10.1089/ars.2011.4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Malarkey E, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52(1–2):142–154. doi:10.1016/j.neuint.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  80. Petrelli F, Bezzi P (2016) Novel insights into gliotransmitters. Curr Opin Pharmacol 26:138–145. doi:10.1016/j.coph.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  81. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85(10):2059–2070. doi:10.1002/jnr.21325

    Article  CAS  PubMed  Google Scholar 

  82. Wang F, Smith NA, Xu Q, Goldman S, Peng W, Huang JH, Takano T, Nedergaard M (2013) Photolysis of caged Ca2+ but not receptor-mediated Ca2+ signaling triggers astrocytic glutamate release. J Neurosci 33(44):17404–17412. doi:10.1523/JNEUROSCI.2178-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ye ZC, Sontheimer H (1996) Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport 7(13):2181–2185

    Article  CAS  PubMed  Google Scholar 

  84. Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 121(8):799–817. doi:10.1007/s00702-014-1180-8

    Article  CAS  Google Scholar 

  85. Nedergaard M, Takano T, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3(9):748–755. doi:10.1038/nrn916

    Article  CAS  PubMed  Google Scholar 

  86. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15(4):961–973

    Article  CAS  PubMed  Google Scholar 

  87. Rothstein JD (1996) Excitotoxicity hypothesis. Neurology 47(4 Suppl 2):S19–S26

    Article  CAS  PubMed  Google Scholar 

  88. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. doi:10.1038/nrn2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414. doi:10.1038/nn835

    CAS  PubMed  Google Scholar 

  90. Leibowitz A, Boyko M, Shapira Y, Zlotnik A (2012) Blood glutamate scavenging: insight into neuroprotection. Int J Mol Sci 13(8):10041–10066. doi:10.3390/ijms130810041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, Miller AH (2003) Interferon-alpha-induced changes in tryptophan metabolism. Relationship to depression and paroxetine treatment. Biol Psychiatry 54(9):906–914. doi:10.1016/s0006-3223(03)00173-2

    Article  CAS  PubMed  Google Scholar 

  92. Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30(1):30–45. doi:10.1016/j.yfrne.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  93. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13(2):54–63. doi:10.1016/j.molmed.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  94. Iliff JJ, Nedergaard M (2013) Is there a cerebral lymphatic system? Stroke 44(6 Suppl 1):S93–S95. doi:10.1161/STROKEAHA.112.678698

    Article  PubMed  PubMed Central  Google Scholar 

  95. Parpura V, Verkhratsky A (2013) Astroglial amino acid-based transmitter receptors. Amino Acids 44(4):1151–1158. doi:10.1007/s00726-013-1458-4

    Article  CAS  PubMed  Google Scholar 

  96. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640. doi:10.1038/nrn1722

    Article  CAS  PubMed  Google Scholar 

  97. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4(7):702–710. doi:10.1038/89490

    Article  CAS  PubMed  Google Scholar 

  98. Lewerenz J, Maher P (2015) Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci 9:469. doi:10.3389/fnins.2015.00469

    Article  PubMed  PubMed Central  Google Scholar 

  99. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361. doi:10.1038/nri3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Murugan M, Ling E-A, Kaur C (2013) Glutamate receptors in microglia. CNS Neurol Disord Drug Targets 12(6):773–784. doi:10.2174/18715273113126660174

    Article  CAS  PubMed  Google Scholar 

  101. Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K (2012) L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J Neuroinflammation 9:275. doi:10.1186/1742-2094-9-275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Persson M, Brantefjord M, Hansson E, Ronnback L (2005) Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia 51(2):111–120. doi:10.1002/glia.20191

    Article  PubMed  Google Scholar 

  103. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25(2):181–213. doi:10.1016/j.bbi.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  104. Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38(10):637–658. doi:10.1016/j.tins.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  105. Gras G, Samah B, Hubert A, Leone C, Porcheray F, Rimaniol AC (2012) EAAT expression by macrophages and microglia: still more questions than answers. Amino Acids 42(1):221–229. doi:10.1007/s00726-011-0866-6

    Article  CAS  PubMed  Google Scholar 

  106. Fleshner M (2013) Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs), microbial associated molecular patterns (MAMPs) and the inflammasome. Brain Behav Immun 27(1):1–7. doi:10.1016/j.bbi.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  107. Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, Banasr M, Duric V, Yamanashi T, Kaneko K, Rasmussen K, Glasebrook A, Koester A, Song D, Jones KA, Zorn S, Smagin G, Duman RS (2015) Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry. doi:10.1016/j.biopsych.2015.11.026

    Google Scholar 

  108. Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23(4):1320–1328

    CAS  PubMed  Google Scholar 

  109. Sitcheran R, Gupta P, Fisher PB, Baldwin AS (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24(3):510–520. doi:10.1038/sj.emboj.7600555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Korn T, Magnus T, Jung S (2005) Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: a mechanism mediated by tumor necrosis factor-alpha. FASEB J 19(13):1878–1880. doi:10.1096/fj.05-3748fje

    CAS  PubMed  Google Scholar 

  111. Ohgoh M, Hanada T, Smith T, Hashimoto T, Ueno M, Yamanishi Y, Watanabe M, Nishizawa Y (2002) Altered expression of glutamate transporters in experimental autoimmune encephalomyelitis. J Neuroimmunol 125(1–2):170–178

    Article  CAS  PubMed  Google Scholar 

  112. Szymocha R, Akaoka H, Dutuit M, Malcus C, Didier-Bazes M, Belin MF, Giraudon P (2000) Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via tax-1 and tumor necrosis factor alpha. J Virol 74(14):6433–6441. doi:10.1128/jvi.74.14.6433-6441.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2007) Altered glutamate reuptake in relapsing–remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66(8):732–739. doi:10.1097/nen.0b013e31812571b0

    Article  CAS  PubMed  Google Scholar 

  114. Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B Biol Sci 369(1654):20130595. doi:10.1098/rstb.2013.0595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19(6):1297–1308

    Article  CAS  PubMed  Google Scholar 

  116. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13(7):465–477. doi:10.1038/nrn3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stone TW, Forrest CM, Darlington LG (2012) Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS J 279(8):1386–1397. doi:10.1111/j.1742-4658.2012.08487.x

    Article  CAS  PubMed  Google Scholar 

  118. Vecsei L, Szalardy L, Fulop F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12(1):64–82. doi:10.1038/nrd3793

    Article  CAS  PubMed  Google Scholar 

  119. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10. doi:10.1124/jpet.102.034439

    Article  CAS  PubMed  Google Scholar 

  120. Schwarcz R (2016) Kynurenines and glutamate: multiple links and therapeutic implications. Adv Pharmacol 76:13–37. doi:10.1016/bs.apha.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  121. Guillemin GJ (2012) Quinolinic acid: neurotoxicity. FEBS J 279(8):1355. doi:10.1111/j.1742-4658.2012.08493.x

    Article  CAS  PubMed  Google Scholar 

  122. Schwarcz R (2004) The kynurenine pathway of tryptophan degradation as a drug target. Curr Opin Pharmacol 4(1):12–17. doi:10.1016/j.coph.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  123. Brundin L, Erhardt S, Bryleva EY, Achtyes ED, Postolache TT (2015) The role of inflammation in suicidal behaviour. Acta Psychiatr Scand 132(3):192–203. doi:10.1111/acps.12458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Erhardt S, Lim CK, Linderholm KR, Janelidze S, Lindqvist D, Samuelsson M, Lundberg K, Postolache TT, Traskman-Bendz L, Guillemin GJ, Brundin L (2013) Connecting inflammation with glutamate agonism in suicidality. Neuropsychopharmacology 38(5):743–752. doi:10.1038/npp.2012.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K, Miller AH (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15(4):393–403. doi:10.1038/mp.2009.116

    Article  CAS  PubMed  Google Scholar 

  126. Meier TB, Drevets WC, Wurfel BE, Ford BN, Morris HM, Victor TA, Bodurka J, Teague TK, Dantzer R, Savitz J (2016) Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun 53:39–48. doi:10.1016/j.bbi.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  127. Savitz J, Dantzer R, Meier TB, Wurfel BE, Victor TA, McIntosh SA, Ford BN, Morris HM, Bodurka J, Teague TK, Drevets WC (2015) Activation of the kynurenine pathway is associated with striatal volume in major depressive disorder. Psychoneuroendocrinology 62:54–58. doi:10.1016/j.psyneuen.2015.07.609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Savitz J, Dantzer R, Wurfel BE, Victor TA, Ford BN, Bodurka J, Bellgowan PS, Teague TK, Drevets WC (2015) Neuroprotective kynurenine metabolite indices are abnormally reduced and positively associated with hippocampal and amygdalar volume in bipolar disorder. Psychoneuroendocrinology 52:200–211. doi:10.1016/j.psyneuen.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  129. Savitz J, Drevets WC, Smith CM, Victor TA, Wurfel BE, Bellgowan PS, Bodurka J, Teague TK, Dantzer R (2015c) Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder. Neuropsychopharmacology 40(2):463–471. doi:10.1038/npp.2014.194

    Article  CAS  PubMed  Google Scholar 

  130. Walker AJ, Foley BM, Sutor SL, McGillivray JA, Frye MA, Tye SJ (2015) Peripheral proinflammatory markers associated with ketamine response in a preclinical model of antidepressant-resistance. Behav Brain Res 293:198–202. doi:10.1016/j.bbr.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  131. Yang JJ, Wang N, Yang C, Shi JY, HY Y, Hashimoto K (2015) Serum interleukin-6 is a predictive biomarker for ketamine’s antidepressant effect in treatment-resistant patients with major depression. Biol Psychiatry 77(3):e19–e20. doi:10.1016/j.biopsych.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  132. Machado-Vieira R, Gold PW, Luckenbaugh DA, Ballard ED, Richards EM, Henter ID, De Sousa RT, Niciu MJ, Yuan P, Zarate CA Jr (2016) The role of adipokines in the rapid antidepressant effects of ketamine. Mol Psychiatry. doi:10.1038/mp.2016.36

    Google Scholar 

  133. Haroon E, Woolwine BJ, Chen X, Pace TW, Parekh S, Spivey JR, XP H, Miller AH (2014) IFN-alpha-induced cortical and subcortical glutamate changes assessed by magnetic resonance spectroscopy. Neuropsychopharmacology 39(7):1777–1785. doi:10.1038/npp.2014.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Capuron L, Pagnoni G, Demetrashvili M, Woolwine BJ, Nemeroff CB, Berns GS, Miller AH (2005) Anterior cingulate activation and error processing during interferon-alpha treatment. Biol Psychiatry 58(3):190–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Capuron L, Pagnoni G, Demetrashvili MF, Lawson DH, Fornwalt FB, Woolwine B, Berns GS, Nemeroff CB, Miller AH (2007) Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology 32(11):2384–2392. doi:10.1038/sj.npp.1301362

    Article  CAS  PubMed  Google Scholar 

  136. Capuron L, Pagnoni G, Drake D, Woolwine B, Spivey J, Crowe R, Votaw J, Goodman M, Miller A (2012) Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry 69(10):1044–1053. doi:10.1001/archgenpsychiatry.2011.2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Harrison NA, Voon V, Cercignani M, Cooper EA, Pessiglione M, Critchley HD (2015) A Neurocomputational account of how inflammation enhances sensitivity to punishments versus rewards. Biol Psychiatry. doi:10.1016/j.biopsych.2015.07.018

    PubMed Central  Google Scholar 

  138. Slavich GM, Way BM, Eisenberger NI, Taylor SE (2010) Neural sensitivity to social rejection is associated with inflammatory responses to social stress. Proc Natl Acad Sci U S A 107(33):14817–14822. doi:10.1073/pnas.1009164107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Godbout J, Johnson R (2009) Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol Allergy Clin North Am 29(2):321–337. doi:10.1016/j.iac.2009.02.007

    Article  PubMed  Google Scholar 

  140. Haroon E, Felger JC, Woolwine BJ, Chen X, Parekh S, Spivey JR, XP H, Miller AH (2015) Age-related increases in basal ganglia glutamate are associated with TNF, reduced motivation and decreased psychomotor speed during IFN-alpha treatment: preliminary findings. Brain Behav Immun 46:17–22. doi:10.1016/j.bbi.2014.12.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haroon, E., Miller, A.H. (2016). Inflammation Effects on Brain Glutamate in Depression: Mechanistic Considerations and Treatment Implications. In: Dantzer, R., Capuron, L. (eds) Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, vol 31. Springer, Cham. https://doi.org/10.1007/7854_2016_40

Download citation

Publish with us

Policies and ethics