Skip to main content

Breeding Systems, Mating Systems, and Genomics of Gender Determination in Angiosperm Trees

  • Chapter
  • First Online:
Comparative and Evolutionary Genomics of Angiosperm Trees

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 21))

Abstract

Angiosperm trees and non-woody plants differ in the prevalence of different genetic transmission systems with the potential to result in categorical differences in adaptive capacity and genomic structure. Decades of careful investigations have revealed that although most tree species are hermaphroditic (perfect flowers), dioecy (unisexual individuals) is more common than throughout the angiosperms, and self-fertilization is exceedingly rare. These patterns indicate that the benefits of outcrossing are strong drivers of the evolution of angiosperm trees. Moreover, patterns of the evolution of genetic sex determination regions in dioecious trees are highly dynamic, including differences between closely related species and genera in the genetic characteristics and location of sex determination regions and which sex is heterogametic (XY vs. ZW). This short review emphasizes that investigations of factors influencing genetic transmission are likely to provide answers to fundamental questions regarding genomic and phenotypic evolution in angiosperm trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta IF, Laparra H, Romero SP, et al. tasselseed1 Is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science. 2009;323:262–5.

    Article  CAS  PubMed  Google Scholar 

  • Adams WT, Allard RW. Mating system variation in Festuca microstachys. Evolution. 1982;36:591–5.

    Article  CAS  PubMed  Google Scholar 

  • Akagi T, Henry IM, Tao R, Comai L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science. 2014;346:646–50.

    Article  CAS  PubMed  Google Scholar 

  • Arunkumar R, Ness RW, Wright SI, Barrett SCH. The evolution of selfing Is accompanied by reduced efficacy of selection and purging of deleterious mutations. Genetics. 2015;199:817–29.

    Article  PubMed  Google Scholar 

  • Aryal R, Ming R. Sex determination in flowering plants: papaya as a model system. Plant Sci. 2014;217:56–62.

    Article  PubMed  Google Scholar 

  • Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet. 2013;14:113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker HG. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution. 1955;9:347–9.

    Google Scholar 

  • Bawa KS. Breeding systems of tree species of a lowland tropical community. Evolution. 1974;28:85–92.

    Article  CAS  PubMed  Google Scholar 

  • Bawa KS, Opler PA. Dioecism in tropical forest trees. Evolution. 1975;29:167–79.

    Article  CAS  PubMed  Google Scholar 

  • Bawa KS, Perry DR, Beach JH. Reproductive-biology of tropical lowland rain-forest trees. 1. Sexual systems and incompatibility mechanisms. Am J Bot. 1985;72:331–45.

    Article  Google Scholar 

  • Bensen RJ, Johal GS, Crane VC, et al. Cloning and characterization of the maize AN1 Gene. Plant Cell. 1995;7:75–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergero R, Charlesworth D. The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol. 2009;24:94–102.

    Article  PubMed  Google Scholar 

  • Boualem A, Fergany M, Fernandez R, et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321:836–8.

    Article  CAS  PubMed  Google Scholar 

  • Boualem A, Troadec C, Camps C, et al. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science. 2015;350:688–91.

    Article  CAS  PubMed  Google Scholar 

  • Brown ADH. Genetic characterization of plant mating systems. In: Brown AHD, Clegg MT, Kahler AL, Weir BS, editors. Plant population genetics, breeding and genetic resources. Sunderland: Sinauer Associates, Inc; 1989.

    Google Scholar 

  • Brown AHD, Allard RW. Estimation of the mating system in open-pollinated maize populations using isozyme polymorphisms. Genetics. 1970;66:133–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caruso CM, Eisen K, Case AL. An angiosperm-wide analysis of the correlates of gynodioecy. Int J Plant Sci. 2016;177:115–21.

    Article  Google Scholar 

  • Carvalho FA, Renner SS. A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol Phylogenet Evol. 2012;65:46–53.

    Article  PubMed  Google Scholar 

  • Charlesworth D. Plant sex determination and sex chromosomes. Heredity. 2002;88:94–101.

    Article  PubMed  Google Scholar 

  • Charlesworth D. Evolution of plant breeding systems. Curr Biol. 2006;16:R726–35.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B. Effective population size and patterns of molecular evolution and variation. Nat Rev Genet. 2009;10:195–205.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B. The effects of deleterious mutations on evolution at linked sites. Genetics. 2012;190:5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth D. Plant contributions to our understanding of sex chromosome evolution. New Phytol. 2015;208:52–65.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D. A model for the evolution of dioecy and gynodioecy. Am Nat. 1978;112:975–97.

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B. Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. Genet Resour. 1980;35:205–14.

    Article  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B. The effects of selection in the gametophyte stage on mutational load. Evolution. 1992;46:703–20.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Wright SI. Breeding systems and genome evolution. Curr Opin Genet Dev. 2001;11:685–90.

    Article  CAS  PubMed  Google Scholar 

  • Chen X-S, Li Q-J. Patterns of plant sexual systems in subtropical evergreen broad-leaved forests in Ailao Mountains, SW China. J Plant Ecol. 2008;1:179–85.

    Article  Google Scholar 

  • Clegg MT. Measuring plant mating systems. Bioscience. 1980;30:814–8.

    Article  Google Scholar 

  • Darwin C. The effects of cross and self fertilisation in the vegetable kingdom. London: John Murray; 1876.

    Book  Google Scholar 

  • Delph LF, Arntz AM, Scotti-Saintagne C, Scotti I. The genomic architecture of sexual dimorphism in the dioecious plant Silene latifolia. Evolution. 2010;64:2873–86.

    PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyre-Walker A, Keightley PD, Smith NGC, Gaffney D. Quantifying the slightly deleterious mutation model of molecular evolution. Mol Biol Evol. 2002;19:2142–9.

    Article  CAS  PubMed  Google Scholar 

  • Fraser LG, Tsang GK, Datson PM, et al. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genomics. 2009;10:102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamble T, Geneva AJ, Glor RE, Zarkower D. Anolis sex chromosomes are derived from a single ancestral pair. Evolution. 2015;68:1027–41.

    Article  Google Scholar 

  • Geber MA. Theories of the evolution of sexual dimorphism. In: Geber MA, Dawson TE, Delph LD, editors. Gender and sexual dimorphism in flowering plants. Berlin: Springer; 1999. p. 97–122.

    Chapter  Google Scholar 

  • Geraldes A, Hefer CA, Capron A, et al. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol Ecol. 2015;24:3243–56.

    Article  CAS  PubMed  Google Scholar 

  • Gibson JP, Diggle PK. Flower development and male sterility in Ocotea tenera (Lauraceae): a gynodioecious tropical tree. Int J Plant Sci. 1998;159:405–17.

    Article  Google Scholar 

  • Golenberg EM, West NW. Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Am J Bot. 2013;100:1022–37.

    Article  CAS  PubMed  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CG. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst. 2005;36:47–79.

    Article  Google Scholar 

  • Hamrick JL, Godt MJW. Allozyme diversity in plant species. In: Brown ADH, Clegg MT, Kahler AL, Weir BS, editors. Plant population genetics, breeding and genetic resources. Sunderland: Sinauer Associates, Inc.; 1989.

    Google Scholar 

  • Hamrick JL, Godt MJW. Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond Ser B Biol Sci. 1996;351:1291–8.

    Article  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL. Factors influencing levels of genetic diversity in woody plant species. Popul Genet For Trees. 1992;42:95–124.

    Article  Google Scholar 

  • Handley LL, Ceplitis H, Ellegren H. Evolutionary strata on the chicken Z chromosome: Implications for sex chromosome evolution. Genetics. 2004;167:367–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayman BI. Mixed selfing and random mating when homozygotes are at a disadvantage. Heredity. 1953;7:185–92.

    Article  Google Scholar 

  • He ZC, Huang HW, Zhong Y. Cytogenetic study of diploid Actinidia chinensis – karyotype, morphology of sex chromosomes at primary differentiation stage and evolutionary significance. Acta Hortic. 2003;610:379–85.

    Article  Google Scholar 

  • Hill WG, Robertson AL. Effect of linkage on limits to artificial selection. Genet Res. 1966;8:269–94.

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Ye N, Zhang D, et al. Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus. Sci Rep. 2015;5:9076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hufford KM, Hamrick JL. Viability selection at three early life stages of the tropical tree, Platypodium elegans (Fabaceae, Papilionoideae). Evolution. 2003;57:518–26.

    Article  PubMed  Google Scholar 

  • Ibarra-Manriquez G, Oyama K. Ecological correlates of reproductive traits of Mexican rain-forest trees. Am J Bot. 1992;79:383–94.

    Article  Google Scholar 

  • Ingvarsson PK. Nucleotide polymorphism and linkage disequilbrium within and among natural populations of European Aspen (Populus tremula L., Salicaceae). Genetics. 2005;169:945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida K, Yoshimaru H, Ito H. Effects of geitonogamy on the seed set of Magnolia obovata Thunb. (Magnoliaceae). Int J Plant Sci. 2003;164:729–35.

    Article  Google Scholar 

  • Kersten B, Pakull B, Groppe K, Lueneburg J, Fladung M. The sex-linked region in Populus tremuloides Turesson 141 corresponds to a pericentromeric region of about two million base pairs on P. trichocarpa chromosome 19. Plant Biol. 2014;16:411–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Plagnol V, Hu TT, et al. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet. 2007;39:1151–5.

    Article  CAS  PubMed  Google Scholar 

  • Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999;286:964–7.

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Schemske DW. The evolution of self-fertilization and inbreeding depression in plants. 1. Genetic models. Evolution. 1985;39:24–40.

    Article  PubMed  Google Scholar 

  • Levin DA, Kerster HW. Assortative pollination for stature in Lythrum salicaria. Evolution. 1972;27:144–52.

    Article  Google Scholar 

  • Levin DA, Watkins L. Assortative mating in Phlox. Heredity. 1984;53:595–602.

    Article  Google Scholar 

  • Li J, Phillips RB, Harwood AS, Koop BF, Davidson WS. Identification of the sex chromosomes of brown trout (Salmo trutta) and their comparison with the corresponding chromosomes in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Cytogenet Genome Res. 2011;133:25–33.

    Article  CAS  PubMed  Google Scholar 

  • Liu ZY, Moore PH, Ma H, et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature. 2004;427:348–52.

    Article  CAS  PubMed  Google Scholar 

  • Machado IC, Lopes AV, Sazima M. Plant sexual systems and a review of the breeding system studies in the Caatinga, a Brazilian tropical dry forest. Ann Bot. 2006;97:277–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mank JE, Promislow DEL, Avise JC. Evolution of alternative sex-determining mechanisms in teleost fishes. Biol J Linn Soc. 2006;87:83–93.

    Article  Google Scholar 

  • Martin A, Troadec C, Boualem A, et al. A transposon-induced epigenetic change leads to sex determination in melon. Nature. 2009;461:1135–8.

    Article  CAS  PubMed  Google Scholar 

  • Matallana G, Wendt T, Araujo DSD, Scarano FR. High abundance of dioecious plants in a tropical coastal vegetation. Am J Bot. 2005;92:1513–9.

    Article  PubMed  Google Scholar 

  • McClure KA, Sawler J, Gardner KM, Money D, Myles S. Genomics: a potential panacea for the perennial problem. Am J Bot. 2014;101:1780–90.

    Article  PubMed  Google Scholar 

  • McVean GAT, Charlesworth B. The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics. 2000;155:929–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moran GF, Brown ADH. Temporal heterogeneity of outcrossing rates in alpine ash (Eucalyptus delegatensis R.T. Bak.). Theor Appl Genet. 1980;57:101–5.

    Article  CAS  PubMed  Google Scholar 

  • Murawski DA, Hamrick JL. The effect of the density of flowering individuals on the mating systems of 9 tropical tree species. Heredity. 1991;67:167–74.

    Article  Google Scholar 

  • Ohta T, Kimura M. On the constancy of the evolutionary rate of cistrons. J Mol Evol. 1971;1:18–25.

    Article  CAS  Google Scholar 

  • Olson MS, Robertson AL, Takebayashi N, et al. Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera). New Phytol. 2010;186:526–36.

    Article  PubMed  Google Scholar 

  • Papadopulos AST, Chester M, Ridout K, Filatov DA. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc Natl Acad Sci U S A. 2015;112:13021–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pucholt P, Ronnberg-Wastljung A, Berlin S. Single locus sex determination and female heterogamy in the basket willow (Salix viminalis L.). Heredity (Edinb). 2015a;114(6):575–83.

    Article  CAS  Google Scholar 

  • Pucholt P, Ronnberg-Wastljung AC, Berlin S. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.). Heredity. 2015b;114:575–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner SS. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot. 2014;101:1588–96.

    Article  PubMed  Google Scholar 

  • Renner SS, Ricklefs RE. Dioecy and its correlates in the flowering plants. Am J Bot. 1995;82:596–606.

    Article  Google Scholar 

  • Rice WR. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution. 1987;41:911–4.

    Article  PubMed  Google Scholar 

  • Richards AJ. Plant breeding systems. London: Chapman and Hall; 1997.

    Book  Google Scholar 

  • Ritland K. A series of FORTRAN computer programs for estimating plant mating systems. Heredity. 1990;81:235–7.

    Google Scholar 

  • Ritland K, Jain S. A model for the estimation of outcrossing rate and gene-frequencies using N independent loci. Heredity. 1981;47:35–52.

    Article  Google Scholar 

  • Savolainen O, Pyhajarvi T. Genomic diversity in forest trees. Curr Opin Plant Biol. 2007;10:162–7.

    Article  CAS  PubMed  Google Scholar 

  • Schemske DW, Lande R. The evolution of self-fertilization and inbreeding depression in plants.2. Empirical observations. Evolution. 1985;39:41–52.

    Article  PubMed  Google Scholar 

  • Schoen DJ. The breeding system of Qilia achilleifolia: variation in floral characteristics and outcrossing rate. Evolution. 1982;36:352–60.

    Article  PubMed  Google Scholar 

  • Sobrevila C, Arroyo MTK. Breeding systems in a montane tropical cloud forest in Venezuela. Plant Syst Evol. 1982;140:19–37.

    Article  Google Scholar 

  • Spigler RB, Lewers KS, Ashman T-L. Genetic architecture of sexual dimorphism in a subdioecious plant with a proto-sex chromosome. Evolution. 2011;65:1114–26.

    Article  PubMed  Google Scholar 

  • Stebbins GL. Variation and evolution in plants. New York: Columbia University Press; 1950.

    Google Scholar 

  • Tanner EVJ. Species-diversity and reproductive mechanisms in Jamaican trees. Biol J Linn Soc. 1982;18:263–78.

    Article  Google Scholar 

  • Vamosi J, Ashman TL, Bachtrog D, et al. Insights from the Tree of Sex: why so many ways of doing it? Genome. 2015;58:290–1.

    Google Scholar 

  • van Doorn GS, Kirkpatrick M. Turnover of sex chromosomes induced by sexual conflict. Nature. 2007;449:909–12.

    Article  PubMed  Google Scholar 

  • van Doorn GS, Kirkpatrick M. Transitions between male and female heterogamety caused by sex-antagonistic selection. Genetics. 2010;186:629–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Na J-K, Yu Q, et al. Sequencing papaya X and Y-h chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci U S A. 2012;109:13710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Street NR, Scofield DG, Ingvarsson PK. Natural selection and recombination rate variation shape nucleotide polymorphism across the genomes of three related Populus species. Genetics. 2016;202:1185–200.

    Article  CAS  PubMed  Google Scholar 

  • Westergaard M. The mechanism of sex determination in dioecious flowering plants. Adv Genet Inc Mol Genet Med. 1958;9:217–81.

    CAS  Google Scholar 

  • Woram RA, Gharbi K, Sakamoto T, et al. Comparative genome analysis of the primary sex-determining locus in salmonid fishes. Genome Res. 2003;13:272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workman PL, Allard RW. Population Studies in predominantly self-pollinated species. III. A matrix model for mixed selfing and random outcrossing. Proc Nat Acad Sci U S A. 1962;48:1318–25.

    Article  CAS  Google Scholar 

  • Wright SI, Andolfatto P. The impact of natural selection on the genome: emerging patterns in drosophila and Arabidopsis. Annu Rev Ecol Evol Syst. 2008;39:193–213.

    Article  Google Scholar 

  • Wright SI, Gaut BS. Molecular population genetics and the search for adaptive evolution in plants. Mol Biol Evol. 2005;22:506–19.

    Article  CAS  PubMed  Google Scholar 

  • Wright SI, Ness RW, Foxe JP, Barrett SCH. Genomic consequences of outcrossing and selfing in plants. Int J Plant Sci. 2008;169:105–18.

    Article  Google Scholar 

  • Wright SI, Kalisz S, Slotte T. Evolutionary consequences of self-fertilization in plants. Pro R Soc B Biol Sci. 2013;280:20130133.

    Google Scholar 

  • Wu M, Moore RC. The evolutionary tempo of sex chromosome degradation in Carica papaya. J Mol Evol. 2015;80:265–77.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wang J, Na J-K, et al. The origin of the non-recombining region of sex chromosomes in Carica and Vasconcellea. Plant J. 2010;63:801–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olson, M.S., Hamrick, J.L., Moore, R. (2016). Breeding Systems, Mating Systems, and Genomics of Gender Determination in Angiosperm Trees. In: Groover, A., Cronk, Q. (eds) Comparative and Evolutionary Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, vol 21. Springer, Cham. https://doi.org/10.1007/7397_2016_21

Download citation

Publish with us

Policies and ethics