Skip to main content
Log in

The Evolutionary Tempo of Sex Chromosome Degradation in Carica papaya

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Genes on non-recombining heterogametic sex chromosomes may degrade over time through the irreversible accumulation of deleterious mutations. In papaya, the non-recombining male-specific region of the Y (MSY) consists of two evolutionary strata corresponding to chromosomal inversions occurring approximately 7.0 and 1.9 MYA. The step-wise recombination suppression between the papaya X and Y allows for a temporal examination of the degeneration progress of the young Y chromosome. Comparative evolutionary analyses of 55 X/Y gene pairs showed that Y-linked genes have more unfavorable substitutions than X-linked genes. However, this asymmetric evolutionary pattern is confined to the oldest stratum, and is only observed when recently evolved pseudogenes are included in the analysis, indicating a slow degeneration tempo of the papaya Y chromosome. Population genetic analyses of coding sequence variation of six Y-linked focal loci in the oldest evolutionary stratum detected an excess of nonsynonymous polymorphism and reduced codon bias relative to autosomal loci. However, this pattern was also observed for corresponding X-linked loci. Both the MSY and its corresponding X-specific region are pericentromeric where recombination has been shown to be greatly reduced. Like the MSY region, overall selective efficacy on the X-specific region may be reduced due to the interference of selective forces between highly linked loci, or the Hill–Robertson effect, that is accentuated in regions of low or suppressed recombination. Thus, a pattern of gene decay on the X-specific region may be explained by relaxed purifying selection and widespread genetic hitchhiking due to its pericentromeric location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arguello JR, Zhang Y, Kado T, Fan C, Zhao R, Innan H, Wang W, Long M (2010) Recombination yet inefficient selection along the Drosophila melanogaster subgroup’s fourth chromosome. Mol Biol Evol 27:848–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bachtrog D (2004) Evidence that positive selection drives Y-chromosome degeneration in Drosophila miranda. Nat Genet 36:518–522

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D (2008) The temporal dynamics of processes underlying Y chromosome degeneration. Genetics 179:1513–1525

    Article  PubMed Central  PubMed  Google Scholar 

  • Bachtrog D (2011) Plant sex chromosomes: a non-degenerated Y? Curr Biol 21:R685–R688

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14:113–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bachtrog D, Charlesworth B (2002) Reduced adaptation of a non-recombining neo-Y chromosome. Nature 416:323–326

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D, Hom E, Wong KM, Maside X, de Jong P (2008) Genomic degradation of a young Y chromosome in Drosophila miranda. Genome Biol 9:R30

    Article  PubMed Central  PubMed  Google Scholar 

  • Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires JC, Rice WR, Valenzuela N (2011) Are all sex chromosomes created equal? Trends Genet 27:350–357

    Article  CAS  PubMed  Google Scholar 

  • Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102

    Article  PubMed  Google Scholar 

  • Bergero R, Charlesworth D (2011) Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system. Curr Biol 21:1470–1474

    Article  CAS  PubMed  Google Scholar 

  • Betancourt AJ, Welch JJ, Charlesworth B (2009) Reduced effectiveness of selection caused by a lack of recombination. Curr Biol 19:655–660

    Article  CAS  PubMed  Google Scholar 

  • Birky CW Jr, Walsh JB (1988) Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci USA 85:6414–6418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown JE, Bauman JM, Lawrie JF, Rocha OJ, Moore RC (2012) The structure of morphological and genetic diversity in natural populations of Carica papaya (Caricaceae) in Costa Rica. Biotropica 44:179–188

    Article  Google Scholar 

  • Charlesworth B (1996) The evolution of chromosomal sex determination and dosage compensation. Curr Biol 6:149–162

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B (2012) The effects of deleterious mutations on evolution at linked sites. Genetics 190:5–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charlesworth D (2013) Plant sex chromosome evolution. J Exp Bot 64:405–420

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Mank JE (2010) The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 186:9–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Betancourt AJ, Kaiser VB, Gordo I (2009) Genetic recombination and molecular evolution. Cold Spring Harb Symp Quant Biol 74:177–186

    Article  CAS  PubMed  Google Scholar 

  • Chen CX, Yu QY, Hou SB, Li YJ, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J, Feng Y, Qian WB, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in brassicales. Genetics 177:2481–2491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chibalina MV, Filatov DA (2011) Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr Biol 21:1475–1479

    Article  CAS  PubMed  Google Scholar 

  • Choo KHA (1998) Why is the centromere so cold? Genome Res 8:81–82

    CAS  PubMed  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gschwend AR, Weingartner LA, Moore RC, Ming R (2012a) The sex-specific region of sex chromosomes in animals and plants. Chromosome Res 20:57–69

    Article  CAS  PubMed  Google Scholar 

  • Gschwend AR, Yu QY, Tong EJ, Zeng FC, Han J, VanBuren R, Aryal R, Charlesworth D, Moore PH, Paterson AH, Ming R (2012b) Rapid divergence and expansion of the X chromosome in papaya. Proc Natl Acad Sci USA 109:13716–13721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haddrill PR, Halligan DL, Tomaras D, Charlesworth B (2007) Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome Biol 8:R18

    Article  PubMed Central  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program from Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Handel MA, Park C, Kot M (1994) Genetic control of sex-chromosome inactivation during male meiosis. Cytogenet Cell Genet 66:83–88

    Article  CAS  PubMed  Google Scholar 

  • Hartfield M, Otto SP (2011) Recombination and hitchhiking of deleterious alleles. Evolution 65:2421–2434

    Article  PubMed  Google Scholar 

  • Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8:269–294

    Article  CAS  PubMed  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaiser VB, Charlesworth B (2010) Muller’s ratchet and the degeneration of the Drosophila miranda neo-Y chromosome. Genetics 185:U339–U491

    Article  Google Scholar 

  • Kirkpatrick M, Guerrero RF (2014) Signatures of sex-antagonistic selection on recombining sex chromosomes. Genetics 197:531–541

    Article  PubMed Central  PubMed  Google Scholar 

  • Kliman RM, Hey J (1993) Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol 10:1239–1258

    CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Marais G (2003) Biased gene conversion: implications for genome and sex evolution. Trends Genet 19:330–338

    Article  CAS  PubMed  Google Scholar 

  • Marais GAB, Nicolas M, Bergero R, Chambrier P, Kejnovsky E, Moneger F, Hobza R, Widmer A, Charlesworth D (2008) Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr Biol 18:545–549

    Article  CAS  PubMed  Google Scholar 

  • McVean GAT, Charlesworth B (2000) The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics 155:929–944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA (2002) Spermatozoal RNA profiles of normal fertile men. Lancet 360:772–777

    Article  CAS  PubMed  Google Scholar 

  • Rand DM, Kann LM (1996) Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol 13:735–748

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Method Mol Biol 132:365–386

    CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang JP, Na JK, Yu QY, Gschwend AR, Han J, Zeng FC, Aryal R, VanBuren R, Murray JE, Zhang WL, Navajas-Perez R, Feltus FA, Lemke C, Tong EJ, Chen CX, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang JM, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci USA 109:13710–13715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  CAS  PubMed  Google Scholar 

  • Weingartner LA, Moore RC (2012) Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex chromosome systems. Mol Biol Evol 29:3909–3920

    Article  CAS  PubMed  Google Scholar 

  • Wright SI, Charlesworth B (2004) The HKA test revisited: a maximum-likelihood-ratio test of the standard neutral model. Genetics 168:1071–1076

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  • Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yu QY, Hou SB, Hobza R, Feltus FA, Wang X, Jin WW, Skelton RL, Blas A, Lemke C, Saw JH, Moore PH, Alam M, Jiang JM, Paterson AH, Vyskot B, Ming R (2007) Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Genet Genomics 278:177–185

    Article  CAS  PubMed  Google Scholar 

  • Yu QY, Hou S, Feltus FA, Jones MR, Murray JE, Veatch O, Lemke C, Saw JH, Moore RC, Thimmapuram J, Liu L, Moore PH, Alam M, Jiang JM, Paterson AH, Ming R (2008a) Low X/Y divergence in four pairs of papaya sex-linked genes. Plant J 53:124–132

    Article  CAS  PubMed  Google Scholar 

  • Yu QY, Navajas-Perez R, Tong E, Robertson J, Moore PH, Paterson AH, Ming R (2008b) Recent origin of dioecious and gynodioecious chromosomes in papaya. Tropical Plant Biol 1:49–57

    Article  Google Scholar 

  • Yu QY, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou SB, Guan PZ, Acob RA, Luo MC, Moore PH, Alam M, Paterson AH, Ming R (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genom 10:371–382

    Article  Google Scholar 

  • Zeng K, Shi S, Wut CI (2007) Compound tests for the detection of hitchhiking under positive selection. Mol Biol Evol 24:1898–1908

    Article  CAS  PubMed  Google Scholar 

  • Zhang WL, Wang XU, Yu QY, Ming R, Jiang JM (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Q, Bachtrog D (2012a) Chromosome-wide gene silencing initiates Y degeneration in Drosophila. Curr Biol 22:522–525

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Bachtrog D (2012b) Sex-specific adaptation drives early sex chromosome evolution in Drosophila. Science 337:341–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their helpful comments in preparing this manuscript. This work was supported by the National Science Foundation (DBI-0922545) to RCM and by the Department of Botany at Miami University through Academic Challenge grants to MW. We are greatly indebted to Oscar Rocha at Kent State University for his help during the specimen collecting process in Costa Rica. We would also like to thank our collaborators Ray Ming (University of Illinois at Urbana-Champaign) and Qingyi Yu (Texas A&M University) for providing papaya sequence information and cultivar tissues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Moore.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Moore, R.C. The Evolutionary Tempo of Sex Chromosome Degradation in Carica papaya . J Mol Evol 80, 265–277 (2015). https://doi.org/10.1007/s00239-015-9680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-015-9680-1

Keywords

Navigation