Skip to main content

Medicinal Chemistry of Plant Naturals as Agonists/Antagonists for Taste Receptors

  • Chapter
  • First Online:
Taste and Smell

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 23))

Abstract

The study of natural compounds that affect the perception of sweet or bitter tastes has a rich history. Coupled to this history is the recent discovery of the sweet and bitter taste receptors allowing for modern biological techniques to be used in taste research. Natural high potency sweeteners from stevia (Stevia rebaudiana) and monk fruit (Siraitia grosvenorii) have recently come to market, and several natural compounds find use as flavors to alter the perception of sweetness or bitterness. This chapter reviews these substances and several other natural products that alter the perception of bitterness or sweetness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindemann B (2001) Receptors and transduction in taste. Nature 413(6852):219–225

    Article  CAS  Google Scholar 

  2. Bisognin DA (2002) Origin and evolution of cultivated cucurbits. Ciência Rural 32(4):715–723

    Article  Google Scholar 

  3. Binello A, Cravotto G, Nano GM, Spagliardi P (2004) Synthesis of chitosan-cyclodextrin adducts and evaluation of their bitter-masking properties. Flavour Fragrance J 19(5):394–400

    Article  CAS  Google Scholar 

  4. Drewnowski A, Gomez-Carneros C (2000) Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr 72(6):1424–1435

    CAS  Google Scholar 

  5. Johns T (1986) Detoxification function of geophagy and domestication of the potato. J Chem Ecol 12(3):635–646

    Article  CAS  Google Scholar 

  6. Roy GM (1990) The applications and future implications of bitterness reduction and inhibition in food products. Crit Rev Food Sci Nutr 29(2):59–71

    Article  CAS  Google Scholar 

  7. Wink M (1988) Chemische verteidigung der lupinen: zur biologischen bedeutung der chinolizidinalkaloide. Theor Appl Genet 75(1–2):225–233

    Article  CAS  Google Scholar 

  8. Haley S (2013) World raw sugar prices – the influence of Brazilian costs of production and world surplus/deficit measures. http://www.ersusda.gov. Accessed 30 Sept 2013

  9. Ley JP (2008) Masking bitter taste by molecules. Chemosens Percept 1(1):58–77

    Article  Google Scholar 

  10. Go Y, Satta Y, Takenaka O, Takahata N (2005) Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170(1):313–326

    Article  CAS  Google Scholar 

  11. Morini G, Bassoli A, Temussi PA (2005) From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2_T1R3 receptor. J Med Chem 48(17):5520–5529

    Article  CAS  Google Scholar 

  12. Winnig M, Bufe B, Kratochwil NA, Slack JP, Meyerhof W (2007) The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor. BMC Struct Biol 7:66

    Article  CAS  Google Scholar 

  13. Shallenberger RS, Acree TE (1967) Molecular theory of sweet taste. Nature 216(5114):480–482

    Article  CAS  Google Scholar 

  14. Tancredi T, Temussi PA (1979) Three-dimensional mapping of the bitter taste receptor site. Chem Senses Flavour 4(4):259–265

    Article  CAS  Google Scholar 

  15. Sheridan C (2004) A taste of the future. Nat Biotechnol 22(10):1203–1205

    Article  CAS  Google Scholar 

  16. Slack JP, Brockhoff A, Batram C, Menzel S, Sonnabend C, Born S, Galindo MM, Kohl S, Thalmann S, Ostopovici-Halip L, Simons CT, Ungureanu I, Duineveld K, Bologa CG, Behrens M, Furrer S, Oprea TI, Meyerhof W (2010) Modulation of bitter taste perception by a small molecule hTAS2R antagonist. Curr Biol 20(12):1104–1109

    Article  CAS  Google Scholar 

  17. Ley JP, Paetz S, Blings M, Hoffmann-Lucke P, Bertram HJ, Krammer GE (2008) Structural analogues of homoeriodictyol as flavor modifiers. Part III: short chain gingerdione derivatives. J Agric Food Chem 56(15):6656–6664

    Article  CAS  Google Scholar 

  18. Bridel M, Lavielle R (1931) Sur le principe sucré des feuilles de Kaâ-hê-é (Stevia rebaundiana B). C R Acad Sci Paris 192:1123–1125

    CAS  Google Scholar 

  19. Kohda H, Kasai R, Yamasaki K, Murakami K, Tanaka O (1976) New sweet diterpene glucosides from Stevia rebaudiana. Phytochemistry 15(6):981–983

    Article  CAS  Google Scholar 

  20. Carakostas MC, Curry LL, Boileau AC, Brusick DJ (2008) Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem Toxicol 46(Suppl 7):S1–S10

    Article  CAS  Google Scholar 

  21. Cheeseman MA (2011) Agency response letter GRAS notice no GRN 000348. http://www.fda.gov/Food/FoodIngredientsPackaging/GenerallyRecognizedasSafeGRAS/GRASListings/ucm267232htm. Accessed 30 Sept 2013

  22. Kruger CL (2009) Agency response letter GRAS notice no GRN 000275. http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm171539htm. Accessed 30 Sept 2013

  23. Roberts A (2011) Agency response letter GRAS notice no GRN 000375. http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm274761htm. Accessed 30 Sept 2013

  24. Fukunaga Y, Miyata T, Nakayasu N, Mizutani K, Kasai R, Tanaka O (1989) Enzymic transglucosylation products of stevioside: separation and sweetness-evaluation. Agric Biol Chem 53(6):1603–1607

    CAS  Google Scholar 

  25. Tanaka O (1997) Improvement of taste of natural sweeteners. Pure Appl Chem 69(4):675–683

    Article  CAS  Google Scholar 

  26. Lee C (1975) Intense sweetener from Lo Han Kuo (Momordica grosvenori). Experientia 31(5):533–534

    Article  CAS  Google Scholar 

  27. Takemoto T, Nakajima T, Arihara S, Okuhira M (1978) Sweet steroid glucosides and related substances from Momordicae. US 4084010

    Google Scholar 

  28. Kinghorn AD, Compadre CM (2012) Less common high-potency sweeteners. In: O’Brien Nabors L (ed) Alternative sweeteners, 4th edn. Taylor & Francis, Boca Raton, pp 223–246

    Google Scholar 

  29. Cheeseman MA (2010) Agency response letter GRAS notice no GRN 000301. http://www.fda.gov/Food/FoodIngredientsPackaging/GenerallyRecognizedasSafeGRAS/GRASListings/ucm200326htm. Accessed 30 Sept 2013

  30. Schwartz TW, Holst B (2007) Allosteric enhancers, allosteric agonists and ago-allosteric modulators: where do they bind and how do they act? Trends Pharmacol Sci 28(8):366–373

    Article  CAS  Google Scholar 

  31. Marnett LJ, Cohen SM, Fukushima S, Gooderham NJ, Hecht SS, Rietjens IM, Smith RL, Adams TB, Hallagan JB, Harman C, McGowen MM, Taylor SV (2013) GRAS flavoring substances 26: the 26th publication by the Expert Panel of the Flavor and Extract Manufacturers Association provides an update on recent progress in the consideration of flavoring ingredients generally recognized as safe under the food additive amendment. Food Technol 67(8):38–56

    Google Scholar 

  32. Smith RL, Waddell WJ, Cohen SM, Feron VJ, Marnett LJ, Portoghese PS, Rietjens IM, Adams TB, Lucas GC, McGowen MM, Taylor SV, Williams MC (2009) GRAS 24: the 24th publication by the FEMA Expert Panel presents safety and usage data on 236 new generally recognized as safe flavoring ingredients. Food Technol 63(6):46–105

    CAS  Google Scholar 

  33. Smith RL, Waddell WJ, Cohen SM, Fukushima S, Gooderham NJ, Hecht SS, Marnett LJ, Portoghese PS, Rietjens IMCM, Adams TB, Gavin CL, McGowen MM, Taylor SV (2011) GRAS: flavoring substances 25. Food Technol 65(7):44–75

    CAS  Google Scholar 

  34. Mizutani K, Tanaka O (2002) The use of Stevia rebaudiana sweeteners in Japan. In: Kinghorn AD (ed) stevia: the genus stevia, medicinal and aromatic plants – industrial profiles, vol 19. Taylor & Francis, London, pp 178–195

    Google Scholar 

  35. Conn JW, Rovner DR, Cohen EL (1968) Licorice-induced pseudoaldosteronism. Hypertension, hypokalemia, aldosteronopenia, and suppressed plasma renin activity. JAMA 205(7):492–496

    Article  CAS  Google Scholar 

  36. Kinghorn AD, Chin Y-W, Pan L, Jia Z (2010) Natural products as sweeteners and sweetness modifiers. In: Verpoorte R (ed) Comprehensive natural products chemistry II: chemistry and biology, vol 6. Elsevier, Oxford, pp 269–315

    Chapter  Google Scholar 

  37. Anonymous (2002) Food and drugs. Fed Reg 67:512–513

    Google Scholar 

  38. Mizutani K, Kuramoto T, Tamura Y, Ohtake N, Doi S, Nakaura M, Tanaka O (1994) Sweetness of glycyrrhetic acid 3-O-beta-D-monoglucuronide and the related glycosides. Biosci Biotechnol Biochem 58(3):554–555

    Google Scholar 

  39. Hall RL, Oser BL (1965) Recent progress in the consideration of flavor ingredients under the food additives amendment 3 GRAS substances. Food Technol 19(2):151–197

    Google Scholar 

  40. Van der Wel H, Loeve K (1972) Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur J Biochem 31(2):221–225

    Article  Google Scholar 

  41. Crammer B (2008) Recent trends of some natural sweet substances from plants. In: Ikan R (ed) Selected topics in the chemistry of natural products. World Scientific, Hackensack NJ, pp 189–207

    Google Scholar 

  42. Oser BL, Ford RA, Bernard BK (1984) Recent progress in the consideration of flavoring ingredients under the food additives amendment. 13. GRAS substances. Food Technol 38(10):66–89

    CAS  Google Scholar 

  43. DuBois GE, Crosby GA, Stephenson RA, Wingard RE Jr (1977) Dihydrochalcone sweeteners. Synthesis and sensory evaluation of sulfonate derivatives. J Agric Food Chem 25(4):763–772

    Article  CAS  Google Scholar 

  44. Horowitz RM, Gentili B (1963) Flavonoids of citrus-VI: Structure of neohesperidose. Tetrahedron 19(5):773–782

    Google Scholar 

  45. Jia Z, Yang X, Hansen CA, Naman CB, Simons CT, Slack JP, Gray K (2010) Consumables. US 20100178389

    Google Scholar 

  46. Waddell WJ, Cohen SM, Feron VJ, Goodman JI, Marnett LJ, Portoghese PS, Rietjens IMCM, Smith RL, Adams TB, Gavin CL, McGowen MM, Williams MC (2007) GRAS flavoring substances 23. Food Technol 61(8):22–61

    Google Scholar 

  47. Kramer G, Ley J, Riess T, Haug M, Paetz S (2010) Use of 4-Hydroxydihydrochalcons and their salts for enhancing an impression of sweetness. 2007107596 A1. US 20100233102

    Google Scholar 

  48. Ley J, Kindel G, Paetz S, Riess T, Haug M, Schmidtmann R, Krammer GE (2008) Use of hesperetin for enhancing the sweet taste.

    Google Scholar 

  49. Fletcher JN (2011) Isolation, Identification, and biological evaluation of potential flavor modulatory flavonoids from Eriodictyon californicum. Ph.D. dissertation, The Ohio State University

    Google Scholar 

  50. Ley JP, Blings M, Paetz S, Kindel G, Freiherr K, Krammer GE, Bertram H-J (2008) Enhancers for sweet taste from the world of non-volatiles: polyphenols as taste modifiers. In: Weerasinghe DK, Dubois GE (eds) Sweetness and sweeteners: biology, chemistry and psychophysics, vol 979, ACS symposium series. American Chemical Society, Washington, pp 400–409

    Chapter  Google Scholar 

  51. Dick WEJ (1981) Structure-taste correlations for flavans and flavanones conformationally equivalent to phyllodulcin. J Agric Food Chem 29(2):305–312

    Article  CAS  Google Scholar 

  52. Garcez FR, Garcez WS, Martins M, Lopes FA (2003) Triterpenoids, lignan and flavans from Terminalia argentea. Biochem Syst Ecol 31(2):229–232

    Article  CAS  Google Scholar 

  53. Daniher A, Wang Y (2010) Flavor molecules. US 20100272656

    Google Scholar 

  54. Wang Y, Daniher A, De Klerk A, Winkel C (2014) Pyridine derivatives with umami flavour. US 20140295045

    Google Scholar 

  55. Asahina Y, Ueno S (1916) Phyllodulcin, a chemical constituent of amacha (Hydrangea thunbergii Sieb.). Yakugaku Zasshi (408):146

    Google Scholar 

  56. Kinghorn AD, Compadre CM (2001) Less common high-potency sweeteners. In: O’Brien Nabors L (ed) Alternative sweeteners, 3rd edn. Marcel Dekker, New York, pp 209–233

    Google Scholar 

  57. Kinghorn AD, Soejarto DD (1986) Sweetening agents of plant origin. CRC Crit Rev Plant Sci 4(2):79–120

    Article  CAS  Google Scholar 

  58. Oser BL, Ford RA (1978) Recent progress in the consideration of flavoring ingredients under the food additives amendment. 11. GRAS substances. Food Technol 32(2):60–70

    CAS  Google Scholar 

  59. Kinghorn AD, Soejarto DD (1989) Intensely sweet compounds of natural origin. Med Res Rev 9(1):91–115

    Article  CAS  Google Scholar 

  60. Ohta M, Sasa S, Inoue A, Tamai T, Fujita I, Morita K, Matsuura F (2010) Characterization of novel steviol glycosides from leaves of Stevia rebaudiana Morita. J Appl Glycosci 57(3):199–209

    Article  CAS  Google Scholar 

  61. Kobayashi M, Horikawa S, Degrandi IH, Ueno J, Mitsuhashi H (1977) Dulcosides A and B, new diterpene glycosides from Stevia rebaudiana. Phytochemistry 16(9):1405–1408

    Article  CAS  Google Scholar 

  62. Sakamoto I, Yamasaki K, Tanaka O (1977) Application of 13C NMR spectroscopy to chemistry of natural glycosides: rebaudioside-C, a new sweet diterpene glycoside of Stevia rebaudiana. Chem Pharm Bull 25(4):844–846

    Article  CAS  Google Scholar 

  63. Morita T, Fujita I, Matsuura F, Ota M (2014) New steviol glycoside from stevia for use as sweeteners. US 20140187761

    Google Scholar 

  64. Prakash I, Campbell M, Chaturvedula VS (2012) Catalytic hydrogenation of the sweet principles of Stevia rebaudiana, rebaudioside B, rebaudioside C, and rebaudioside D and sensory evaluation of their reduced derivatives. Int J Mol Sci 13(11):15126–15136

    Article  CAS  Google Scholar 

  65. Prakash I, Campbell M, San Miguel RI, Chaturvedula VS (2012) Synthesis and sensory evaluation of ent-kaurane diterpene glycosides. Molecules 17(8):8908–8916

    Google Scholar 

  66. Kasai R, Kaneda N, Tanaka O, Yamasaki K, Sakamoto I, Morimoto K, Okada S, Kitahata S, Furukawa H (1981) Sweet diterpene-glycosides of leaves of Stevia rebaudiana Bertoni – synthesis and structure-sweetness relationship of rebaudiosides-A, -D, -E and their related glycosides. Nippon Kagaku Kaishi 5:726–735

    Article  Google Scholar 

  67. Marchal A, Waffo-Teguo P, Genin E, Merillon JM, Dubourdieu D (2011) Identification of new natural sweet compounds in wine using centrifugal partition chromatography-gustatometry and Fourier transform mass spectrometry. Anal Chem 83(24):9629–9637

    Article  CAS  Google Scholar 

  68. Li YJW, Nakajima J-i, Kimura N, Saito K, Seo S (2007) Oleanane-type triterpene glycosides from Glycyrrhiza uralensis. Nat Prod Commun 2(3):243–248

    Google Scholar 

  69. Li YJW, Nakajima J, Senoo S, Saito K (2011) Triterpene glycosides, and sweeteners containing them or Glycyrrhiza extracts. JP 4730785

    Google Scholar 

  70. Ley J, Reichelt K, Obst K, Wessjohann L, Wessjohann S, Van Sung T, Nguyen TA, Van Trai N (2014) Orally consumed preparations comprising sweet-tasting triterpenes and triterpene glycosides. US 20140170083

    Google Scholar 

  71. Jia Z, Yang X (2009) A minor, sweet cucurbitane glycoside from Siraitia grosvenorii. Nat Prod Commun 4(6):769–772

    CAS  Google Scholar 

  72. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A 99(7):4692–4696

    Article  CAS  Google Scholar 

  73. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390

    Article  CAS  Google Scholar 

  74. Sainz E, Korley JN, Battey JF, Sullivan SL (2001) Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 77(3):896–903

    Article  CAS  Google Scholar 

  75. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115(3):255–266

    Article  CAS  Google Scholar 

  76. Galvez T, Parmentier ML, Joly C, Malitschek B, Kaupmann K, Kuhn R, Bittiger H, Froestl W, Bettler B, Pin JP (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 274(19):13362–13369

    Article  CAS  Google Scholar 

  77. Pin JP, Galvez T, Prezeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98(3):325–354

    Article  CAS  Google Scholar 

  78. Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R (2006) The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 12(35):4591–4600

    Article  CAS  Google Scholar 

  79. Gal J (2012) The discovery of stereoselectivity at biological receptors: Arnaldo Piutti and the taste of the asparagine enantiomers – history and analysis on the 125th anniversary. Chirality 24(12):959–976

    Article  CAS  Google Scholar 

  80. Li X, Servant G (2008) Functional characterization of human sweet taste receptor: high-throughput screening assay development and structure function relation. In: Weerasinghe DK, DuBois GE (eds) Sweetness and sweeteners: biology, chemistry and psychophysics. American Chemical Society, Washington, pp 368–385

    Chapter  Google Scholar 

  81. Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407(6807):971–977

    Article  CAS  Google Scholar 

  82. Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X (2004) Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci U S A 101(39):14258–14263

    Article  CAS  Google Scholar 

  83. Nie Y, Vigues S, Hobbs JR, Conn GL, Munger SD (2005) Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Curr Biol 15(21):1948–1952

    Article  CAS  Google Scholar 

  84. Temussi PA (2002) Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. FEBS Lett 526(1–3):1–4

    Article  CAS  Google Scholar 

  85. Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M (2004) The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J Biol Chem 279(43):45068–45075

    Article  CAS  Google Scholar 

  86. Koizumi A, Nakajima K, Asakura T, Morita Y, Ito K, Shmizu-Ibuka A, Misaka T, Abe K (2007) Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochem Biophys Res Commun 358(2):585–589

    Article  CAS  Google Scholar 

  87. Assadi-Porter FM, Maillet EL, Radek JT, Quijada J, Markley JL, Max M (2010) Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. J Mol Biol 398(4):584–599

    Article  CAS  Google Scholar 

  88. Urwyler S (2011) Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 63(1):59–126

    Article  CAS  Google Scholar 

  89. Hellfritsch C, Brockhoff A, Stahler F, Meyerhof W, Hofmann T (2012) Human psychometric and taste receptor responses to steviol glycosides. J Agric Food Chem 60(27):6782–6793

    Article  CAS  Google Scholar 

  90. Krohn M, Seibert S, Kleber A, Wonschik J (2012) Sweetener and/or sweetness enhancer, sweetener composition, methods of making the same and consumables containing the same. WO 2012107203

    Google Scholar 

  91. Krohn M, Seibert S, Kleber A, Wonschik J (2012) Sweetener and/or sweetness enhancer, sweetener composition, methods of making the same and consumables containing the same. WO 2012107205

    Google Scholar 

  92. Krohn M, Seibert S, Kleber A, Wonschik J (2012) Sweetener, sweetener compositions, methods of making the same and consumables containing the same. WO 2012107202

    Google Scholar 

  93. Krohn M, Seibert S, Kleber A, Wonschik J (2012) Sweetener and/or sweetness enhancer, sweetener composition, methods of making the same and consumables containing the same. WO 2012107207

    Google Scholar 

  94. Krohn M, Seibert S, Kleber A, Wonschik J (2012) Sweetness enhancer, sweetener compositions, methods of making the same and consumables containing the same. WO 2012107204

    Google Scholar 

  95. Krohn M, Seibert S, Kleber A, Wonschik J (2012) Sweetener and/or sweetness enhancer, sweetener composition, methods of making the same and consumables containing the same. WO 2012107206

    Google Scholar 

  96. Gaydou EM, Bianchini JP, Randriamiharisoa RP (1987) Orange and mandarin peel oils differentiation using polymethoxylated flavone composition. J Agric Food Chem 35(4):525–529

    Article  CAS  Google Scholar 

  97. Moharram FA, Marzouk MS, Ibrahim MT, Mabry TJ (2006) Antioxidant galloylated flavonol glycosides from Calliandra haematocephala. Nat Prod Res 20(10):927–934

    Article  CAS  Google Scholar 

  98. Bokesch HR, Wamiru A, Le Grice SF, Beutler JA, McKee TC, McMahon JB (2008) HIV-1 ribonuclease H inhibitory phenolic glycosides from Eugenia hyemalis. J Nat Prod 71(9):1634–1636

    Article  CAS  Google Scholar 

  99. Potier P, Das B, Bui AM, Janot MM, Pourrat A, Pourrat H (1966) Structure of tormentic acid, a pentacyclic triterpene acid isolated from the roots of Potentilla tormentosa. Bull Soc Chim Fr 11:3458–3465

    Google Scholar 

  100. Otsuka H, Takeda Y, Yamasaki K (1990) Xyloglucosides of benzyl and phenethyl alcohols and Z-hex-3-en-1-ol from leaves of Alangium platanifolium var. trilobum. Phytochemistry 29(11):3681–3683

    Google Scholar 

  101. Kleinhofs A, Haskins FA, Gorz HJ (1967) trans-o-Hydroxycinnamic acid glucosylation in cell-free extracts of Melilotis alba. Phytochemistry 6(10):1313–1318

    Google Scholar 

  102. Ratnayake AS, Yoshida WY, Mooberry SL, Hemscheidt T (2001) The structure of microcarpalide, a microfilament disrupting agent from an endophytic fungus. Org Lett 3(22):3479–3481

    Article  CAS  Google Scholar 

  103. Wessjohann L, Backes M, Ley J, Paetz S, Reichelt K (2010) Use of hydroxyflavan derivatives for taste modification. US 20100292175

    Google Scholar 

  104. Fraser AW, Lewis JR (1974) Rutaceae constituents. IV. Flavonoids from Merrillia caloxylon. Phytochemistry 13(8):1561–1564

    Article  CAS  Google Scholar 

  105. Krohn M, Seibert S, Kleber A (2012) Sweetness enhancer, sweetener compositions, methods of making the same and consumables containing the same. US 20120201935

    Google Scholar 

  106. Kashket S (1990) Sweetness and flavor enhancement with flavanols. US 4906480

    Google Scholar 

  107. DuBois GE, Prakash I (2012) Non-caloric sweeteners, sweetness modulators, and sweetener enhancers. Ann Rev Food Sci Technol 3:353–380

    Article  CAS  Google Scholar 

  108. Krohn M, Zinke H (2009) Cyclic lipopeptides for use as taste modulators. WO 2009156112

    Google Scholar 

  109. Krohn M, Zinke H (2009) Oligopeptides for use as taste modulators. US 20090202698

    Google Scholar 

  110. Sigoillot M, Brockhoff A, Meyerhof W, Briand L (2012) Sweet-taste-suppressing compounds: current knowledge and perspectives of application. Appl Microbiol Biotechnol 96(3):619–630

    Article  CAS  Google Scholar 

  111. Acree TE, Lindley M (2008) Structure-activity relationship and AH-B after 40 years. In: Weerasinghe DK, DuBois GE (eds) Sweetness and sweeteners: biology, chemistry and psychophysics, vol 979, ACS symposium series. American Chemical Society, Washington, pp 96–108

    Chapter  Google Scholar 

  112. Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM, Osman R, Margolskee RF, Max M (2005) Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem 280(15):15238–15246

    Article  CAS  Google Scholar 

  113. Burdock GA, Wagner BM, Smith RL, Munro IC, Newberne PM (1990) Recent progress in the consideration of flavoring ingredients under the food additives amendment. 15. GRAS substances. Food Technol 44(2):78–86

    CAS  Google Scholar 

  114. Hooper D (1887) An examination of the leaves of Gymnema sylvestre. Pharm J Trans 17:867–868

    Google Scholar 

  115. Liu HM, Kiuchi F, Tsuda Y (1992) Isolation and structure elucidation of gymnemic acids, antisweet principles of Gymnema sylvestre. Chem Pharm Bull 40(6):1366–1375

    Article  CAS  Google Scholar 

  116. Maeda M, Iwashita T, Kurihara Y (1989) Studies on taste modifiers. II. Purification and structure determination of gymnemic acids, antisweet active principle from Gymnema sylvestre leaves. Tetrahedron Lett 30(12):1547–1550

    Article  CAS  Google Scholar 

  117. Yoshikawa K, Amimoto K, Arihara S, Matsuura K (1989) Structure studies of new antisweet constituents from Gymnema sylvestre. Tetrahedron Lett 30(9):1103–1106

    Article  CAS  Google Scholar 

  118. Yoshikawa K, Amimoto K, Arihara S, Matsuura K (1989) Gymnemic acid V, VI and VII from Gur-Ma, the leaves of Gymnema sylvestre R. Br. Chem Pharm Bull 37(3):852–854

    Article  CAS  Google Scholar 

  119. Yoshikawa K, Kondo Y, Arihara S, Matsuura K (1993) Antisweet natural products. IX. Structures of gymnemic acids XV–XVIII from Gymnema sylvestre R. Br. V. Chem Pharm Bull 41(10):1730–1732

    Article  CAS  Google Scholar 

  120. Yoshikawa K, Nakagawa M, Yamamoto R, Arihara S, Matsuura K (1992) Antisweet natural products. V. Structures of gymnemic acids VIII–XII from Gymnema sylvestre R. Br. Chem Pharm Bull 40(7):1779–1782

    Article  CAS  Google Scholar 

  121. Yoshikawa K, Arihara S, Matsuura K (1991) A new type of antisweet principles occurring in Gymnema sylvestre. Tetrahedron Lett 32(6):789–792

    Article  CAS  Google Scholar 

  122. Ye W, Liu X, Zhang Q, Che CT, Zhao S (2001) Antisweet saponins from Gymnema sylvestre. J Nat Prod 64(2):232–235

    Article  CAS  Google Scholar 

  123. Imoto T, Miyasaka A, Ishima R, Akasaka K (1991) A novel peptide isolated from the leaves of Gymnema sylvestre–I. Characterization and its suppressive effect on the neural responses to sweet taste stimuli in the rat. Comp Biochem Physiol A Comp Physiol 100(2):309–314

    Article  CAS  Google Scholar 

  124. Yoshikawa K, Nagai Y, Yoshida M, Arihara S (1993) Antisweet natural products. VIII. Structures of hodulosides VI–X from Hovenia dulcis Thunb. var. tomentella Makino. Chem Pharm Bull 41(10):1722–1725

    Article  CAS  Google Scholar 

  125. Yoshikawa K, Tumura S, Yamada K, Arihara S (1992) Antisweet natural products. VII. Hodulosides I, II, III, IV, and V from the leaves of Hovenia dulcis Thunb. Chem Pharm Bull 40(9):2287–2291

    Article  CAS  Google Scholar 

  126. Yoshikawa K, Shimono N, Arihara S (1991) Antisweet substances, jujubasaponins I-III from Zizyphus jujuba. Revised structure of ziziphin. Tetrahedron Lett 32(48):7059–7062

    Article  CAS  Google Scholar 

  127. Yoshikawa K, Shimono N, Arihara S (1992) Antisweet natural products. VI. Jujubasaponins IV, V and VI from Zizyphus jujuba Mill. Chem Pharm Bull 40(9):2275–2278

    Article  CAS  Google Scholar 

  128. Maehashi K, Matano M, Kondo A, Yamamoto Y, Udaka S (2007) Riboflavin-binding protein exhibits selective sweet suppression toward protein sweeteners. Chem Senses 32(2):183–190

    Article  CAS  Google Scholar 

  129. Masuda T, Ueno Y, Kitabatake N (2001) Sweetness and enzymatic activity of lysozyme. J Agric Food Chem 49(10):4937–4941

    Article  CAS  Google Scholar 

  130. Galindo-Cuspinera V, Winnig M, Bufe B, Meyerhof W, Breslin PA (2006) A TAS1R receptor-based explanation of sweet ‘water-taste’. Nature 441(7091):354–357

    Article  CAS  Google Scholar 

  131. Bartoshuk LM, Lee CH, Scarpellino R (1972) Sweet taste of water induced by artichoke (Cynara scolymus). Science 178(4064):988–989

    Article  CAS  Google Scholar 

  132. Nakajima K, Morita Y, Koizumi A, Asakura T, Terada T, Ito K, Shimizu-Ibuka A, Maruyama J, Kitamoto K, Misaka T, Abe K (2008) Acid-induced sweetness of neoculin is ascribed to its pH-dependent agonistic-antagonistic interaction with human sweet taste receptor. FASEB J 22(7):2323–2330

    Google Scholar 

  133. Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35(2):157–170

    Article  CAS  Google Scholar 

  134. Verzele M (1986) 100 Years of hop chemistry and its relevance to brewing. J Inst Brew 92(1):32–48

    Article  CAS  Google Scholar 

  135. Intelmann D, Batram C, Kuhn C, Haseleu G, Meyerhof W, Hofmann T (2009) Three TAS2R bitter taste receptors mediate the psychophysical responses to bitter compounds of hops (Humulus lupulus L) and beer. Chemosens Percept 2:118–132

    Article  Google Scholar 

  136. Puri M, Marwaha SS, Kothari RM, Kennedy JF (1996) Biochemical basis of bitterness in citrus fruit juices and biotech approaches for debittering. Crit Rev Biotechnol 16(2):145–155

    Article  CAS  Google Scholar 

  137. Hayes JE, Wallace MR, Knopik VS, Herbstman DM, Bartoshuk LM, Duffy VB (2011) Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem Senses 36(3):311–319

    Article  CAS  Google Scholar 

  138. Heckman MA, Weil J, Gonzalez de Mejia E (2010) Caffeine (1,3,7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75(3):R77–87

    Article  CAS  Google Scholar 

  139. Sharma S, Lewis S (2010) Taste masking technologies: a review. Int J Pharm Pharm Sci 2(2):6–13

    CAS  Google Scholar 

  140. Breslin PAS (1996) Interactions among salty, sour and bitter compounds. Trends Food Sci Technol 7(12):390–399

    Article  CAS  Google Scholar 

  141. Fuke S, Ueda Y (1996) Interactions between umami and other flavor characteristics. Trends Food Sci Technol 7(12):407–411

    Article  CAS  Google Scholar 

  142. Nakamura T, Tanigake A, Miyanaga Y, Ogawa T, Akiyoshi T, Matsuyama K, Uchida T (2002) The effect of various substances on the suppression of the bitterness of quinine-human gustatory sensation, binding, and taste sensor studies. Chem Pharm Bull 50(12):1589–1593

    Article  CAS  Google Scholar 

  143. Lawless HT (1979) Evidence for neural inhibition in bittersweet taste mixtures. J Comp Physiol Psychol 93(3):538–547

    Article  CAS  Google Scholar 

  144. Finley JW, Holliday D, King JM, Prudente ADJ (2011) Masking bitter flavors by using mogrosides. WO 2011046768

    Google Scholar 

  145. Bridges JR, Carlson A, Patton PA (2012) Stevia blends containing rebaudioside B. WO 2012102769

    Google Scholar 

  146. Del Rio JA, Benavente O, Castillo J, Borrego F (1992) Neodiosmin, a flavone glycoside of Citrus aurantium. Phytochemistry 31(2):723–724

    Article  Google Scholar 

  147. Guadagni DG, Horowitz RM, Gentili B, Maier VP (1977) Method of reducing bitterness in citrus juices. US 4031265

    Google Scholar 

  148. Guadagni DG, Maier VP, Turnbaugh JG (1976) Effect of neodiosmin on threshold and bitterness of limonin in water and orange juice. J Food Sci 41(3):681–684

    Article  CAS  Google Scholar 

  149. Neely JS, Thompson JA (1975) Culinary composition containing paramethoxycinnamaldehyde as a flavoring agent and sweetener. US 3867557

    Google Scholar 

  150. Riemer JA (1994) Bitterness inhibitors for foods and artificial sweeteners. US 5336513

    Google Scholar 

  151. Rother R (1887) Some constituents of Yerba Santa. Am J Pharm 59:225

    Google Scholar 

  152. Sayre LEA (1917) A manual of organic materia medica and pharmacognosy. P Blakiston’s Son and Co, Philadelphia.

    Google Scholar 

  153. Ley JP, Krammer G, Reinders G, Gatfield IL, Bertram HJ (2005) Evaluation of bitter masking flavanones from Herba Santa (Eriodictyon californicum (H. and A.) Torr., Hydrophyllaceae). J Agric Food Chem 53(15):6061–6066

    Article  CAS  Google Scholar 

  154. Ley JP, Blings M, Paetz S, Krammer GE, Bertram HJ (2006) New bitter-masking compounds: hydroxylated benzoic acid amides of aromatic amines as structural analogues of homoeriodictyol. J Agric Food Chem 54(22):8574–8579

    Article  CAS  Google Scholar 

  155. Ley JP, Paetz S, Blings M, Riess T, Krammer GE (2010) Structural analogues of hispolon as flavor modifiers. In: Blank I, Wuest M, Yeretzian C (eds) 12th Weurman Symposium, Interlaken, Switzerland, 1–4 July 2008. Expression of multidisciplinary flavour science. Zuercher Hochschule fuer Angewandte Wissenschaften, Institut fuer Chemie und Biologische Chemie Waedenswil, Switzerland, pp 402–405

    Google Scholar 

  156. Oertling H, Loges H, Machinek A, Simchen U, Surburg H (2011) Teeth cleaning compound containing menthol with reduced bitter sensation. US 20110081303

    Google Scholar 

  157. Blakeslee AF (1935) A dinner demonstration of threshold differences in taste and smell. Science 81(2108):504–507

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua N. Fletcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fletcher, J.N., Pan, L., Kinghorn, A.D. (2014). Medicinal Chemistry of Plant Naturals as Agonists/Antagonists for Taste Receptors. In: Krautwurst, D. (eds) Taste and Smell. Topics in Medicinal Chemistry, vol 23. Springer, Cham. https://doi.org/10.1007/7355_2014_81

Download citation

Publish with us

Policies and ethics