Skip to main content

The Nucleoskeleton

  • Chapter
  • First Online:
Plant Cell Monographs

Part of the book series: Plant Cell Monographs

Abstract

The nucleoskeleton (NSK) is the dynamic nuclear network that provides support for nuclear organization and functioning. It is composed of numerous interacting structural proteins that provide a dynamic platform for the multimeric nuclear complexes involved in the regulation of replication, transcription/splicing, chromatin remodelling, nuclear transport, signalling, formation of structural elements, etc. Its protein composition is complex. Its main components are the lamins and the lamin-associated proteins (LAPs) that form a multimeric complex or lamina; the long expandable proteins of the endoskeleton such as EAST, megator, skeletor, chromator and nuance; and actin and its associated proteins; while the nucleolar domain has its own organization and composition . This chapter focuses on the organization, composition and roles of the nucleoskeleton and summarizes the data on the organization and specific protein composition of the plant nucleoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abad PC, Mian IS, Plachot C, Nelpurackal A, Bator-Kelly C, Lelievre SA (2004) The C-terminus of the nuclear protein NuMA: phylogenetic distribution and structure. Protein Sci 13:2573–2577

    Article  PubMed  CAS  Google Scholar 

  • Abad PC, Lewis J, Mian IS, Knowles DW, Sturgis J, Badve S, Xie J, Lelievre SA (2007) NuMA influences higher order chromatin organization in human mammary epithelium. Mol Biol Cell 18:348–361

    Article  PubMed  CAS  Google Scholar 

  • Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Kúpper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting networks. Chrom Res 14:707–733

    Article  PubMed  CAS  Google Scholar 

  • Barboro P, D’Arrigo C, Diaspro A, Mormino M, Alberti I, Parodi S, Patrone E, Balbi C (2002) Unravelling the organization of the internal nuclear matrix: RNA-dependent anchoring of NuMA to a lamin scaffold. Exp Cell Res 279:202–218

    Article  PubMed  CAS  Google Scholar 

  • Barboro P, D’Arrigo C, Mormino M, Coradeghini R, Parodi S, Patrone E, Balbi C (2003) An intranuclear frame for chromatin compartmentalization and higher-order folding. J Cell Biochem 88:113–120

    Article  PubMed  CAS  Google Scholar 

  • Bettinger BT, Gilbert DM, Amberg DC (2004) Actin up in the nucleus. Nat Rev Mol Cell Biol 5:410–415

    Article  PubMed  CAS  Google Scholar 

  • Blessing CA, Ugrinova GT, Goodson HV (2004) Actin and ARPs: action in the nucleus. Trends Cell Biol 14:435–442

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal SSD, Clark GB, Roux SJ (2004) Biochemical and immunological characterization of pea nuclear intermediate filament proteins. Planta 218:965–975

    Article  PubMed  CAS  Google Scholar 

  • Bowman SK, Neumüller RA, Novatchkova M, Du Q, Knoblich JA (2006) The Drosophila NuMA homolog Mud regulates spindle orientation in asymmetric division. Dev Cell 10:731–742

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Foeger N, Kill IR, Herrmann H (2007) The nuclear lamina. Both a structural framework and a platform for genome organization. FEBS J 274:1354–1361

    Article  PubMed  CAS  Google Scholar 

  • Calikowski TT, Meulia T, Meier I (2003) A proteomic study of the Arabidopsis. nuclear matrix J Cell Biochem 218:361–378

    Article  CAS  Google Scholar 

  • Chakalova L, Debrand E, Mitchell JA, Osborne CS, Fraser P (2005) Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 6:669–677

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Shen X (2007) Nuclear actin and actin-related proteins in chromatin dynamics. Curr Opin Cell Biol 19:326–330

    Article  PubMed  CAS  Google Scholar 

  • Chen HM, Zhou J, Dai YR (2000) Cleavage of lamin-like proteins in in vivo and in vitro apoptosis of tobacco protoplasts induced by heat shock. FEBS Lett :480165–168

    Article  CAS  Google Scholar 

  • Collier S, Pendle A, Boudonck K, van Rij T, Dolan L, Shaw P (2006) A distant coilin homologue is required for the formation of Cajal bodies in Arabidopsis. Mol Biol Cell 17:2942–2951

    Article  PubMed  CAS  Google Scholar 

  • Corben E, Butcher G, Hutchings A, Wells B, Roberts K (1989) A nucleolar matrix protein from carrot cells identified by a monoclonal antibody. Eur J Cell Biol 50:353–359

    CAS  Google Scholar 

  • Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S (2006) Chromosome territories – a functional nuclear landscape. Curr Opin Cell Biol 18:307–316

    Article  PubMed  CAS  Google Scholar 

  • Cruz JR, De la Torre C, Moreno Díaz de la Espina S (2007) Nuclear actin in plants. Cell Biol Int, doi:10.1016/j.cellbi.2007.11.004

    Google Scholar 

  • De Ruijter N, Ketelaar T, Blumenthal SSD, Emons A, Schel JHN (2000) Spectrin-like proteins in plant nuclei. Cell Biol Int 24:427–438

    Article  PubMed  CAS  Google Scholar 

  • Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ (2007) LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19:2793–2803

    Article  PubMed  CAS  Google Scholar 

  • Dorner D, Gotzmann J, Foisner R (2007) Nucleoplasmic lamins and their interaction partners, LAP2α, Rb, and BAF, in transcriptional regulation FEBS J 274:1362–1373

    Article  PubMed  CAS  Google Scholar 

  • Du Q, Taylor L, Compton DA, Macara IG (2002) LGN blocks the ability of NuMA to bind and stabilize microtubules: a mechanism for mitotic spindle assembly regulation. Curr Biol 12:1928–1933

    Article  PubMed  CAS  Google Scholar 

  • Espada J, Ballestar E, Santoro R, Fraga MF, Villar-Garea A, Nemeth A, López-Serra L, Ropero S, Aranda A, Orozco H, Moreno V, Juarranz A, Stockert JC, Längst G, Grummt I, Bickmore W, Esteller M (2007) Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DMA methyltransferase 1 (Dnmt1) deficient cells. Nucleic Acids Res 35:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Fabian L, Xia X, Venkitaramani DV, Johansen KM, Johansen J, Andrew DJ, Forer A (2007) Titin in insect spermatocyte spindle fibers associates with microtubules, actin, myosin, and the matrix proteins skeletor, megator and chromator. J Cell Sci 120:2190–2204

    Article  PubMed  CAS  Google Scholar 

  • Fakan S (2004) The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem Cell Biol 122:83–93

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto S, Matsunaga S, Yonemura M, Uchiyama S, Azuma T, Fukui K (2004) Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces. Plant Mol Biol 56:225–239

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara S, Matsuda N, Sato T, Sonobe S, Maeshima M (2002) Molecular properties of a matrix attachment region-binding protein located in the nucleoli of tobacco cells. Plant Cell Physiol 43:1558–1567

    Article  PubMed  CAS  Google Scholar 

  • Gonda K, Wudel J, Nelson D, Katoku-Kikyo N, Reed P, Tamada H, Kikyo N (2006) Requirement of the protein B23 for nucleolar disassembly induced by the FRGY2a family proteins. J Biol Chem 281:8153–8160

    Article  PubMed  CAS  Google Scholar 

  • Goztmann J, Eger A, Meissner M, Grimm R, Gerner C, Sauermann G, Foisner R (1997) Two-dimensional electrophoresis reveals a nuclear-matrix associated nucleolin complex of basic isoelectric point. Electrophoresis 18:2645–2653

    Article  Google Scholar 

  • Graumann K, Irons SL, Runions J, Evans DE (2007) Retention and mobility of mamalian lamin B receptor in the plant nuclear envelope. Biol Cell 99:553–562

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL (2005) The nuclear lamina comes of age. Nat Rev Mol Biol 6:21–31

    Article  CAS  Google Scholar 

  • Harborth J, Wang J, Gueth-Hallonet C, Weber K, Osborn M (1999) Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice. EMBO J 18:1689–1700

    Article  PubMed  CAS  Google Scholar 

  • Harborth J, Weber K, Osborn M (2000) GAS41, a highly conserved protein in eukaryotic nuclei, binds to NuMA. J Biol Chem 275:31979–31985

    Article  PubMed  CAS  Google Scholar 

  • Hatton D, Gray JC (1999) Two MAR DNA-binding proteins of the pea nuclear matrix identify a new class of DNA-binding proteins. Plant J 18:417–429

    Article  PubMed  CAS  Google Scholar 

  • He D, Nickerson JA, Penman P (1990) Core filaments of the nuclear matrix. J Cell Biol 110:569–580

    Article  PubMed  CAS  Google Scholar 

  • Heun P (2007) SUMOrganization of the nucleus. Curr Opin Cell Biol 19:1–6

    Article  CAS  Google Scholar 

  • Holaska JM, Kowalski AK, Wilson KL (2004) Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol 2:1354–1362

    Article  CAS  Google Scholar 

  • Houben B, Ramaekers FCS, Snoeckx LHEH, Broers JLV (2006) Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength. Biochim Biophys Acta 1773:663–674

    Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus. MAP215-like protein, MOR1 Plant Mol Biol 50:915–924

    Article  PubMed  CAS  Google Scholar 

  • Igarashi H, Ori H, Mori H, Shimmen T, Sonobe S (2000) Isolation of a novel 190-kDa protein from tobacco BY2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol 41:920–931

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Cook PR (1988) Visualization of a filamentous nucleoskeleton with a 23-nm axial repeat. EMBO J 7:3667–3677

    PubMed  CAS  Google Scholar 

  • Jockusch BM, Schoenenberger CA, Stetefeld J, Aebi U (2006) Tracking down the different forms of nuclear actin. Trends Cell Biol 16:391–396

    Article  PubMed  CAS  Google Scholar 

  • Kiseleva E, Drummond SP, Goldberg MW, Rutherford SA, Allen TD, Wilson KL (2004) Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus oocyte. nuclei J Cell Sci 117:2481–2490

    Article  PubMed  CAS  Google Scholar 

  • Krauss SW, Chen C, Penman S, Heald R (2003) Nuclear actin and protein 4.1: essentials interactions during nuclear assembly in vitro. Proc Natl Acad Sci USA 100:10752–10757

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kruger T, Zentgraf H, Scheer U (2007) Intranuclear sites of ribosome biogenesis defined by the localization of early binding ribosomal proteins. J Cell Biol 177:573–578

    Article  PubMed  CAS  Google Scholar 

  • Lam YW, Fox AH, Leung AKL, Andersen JS, Mann M, Lamond AI (2004) Proteomics of the nucleolus. In: Olson MOJ (ed) The nucleolus. Kluwer/Plenum, New York, pp 302–314

    Google Scholar 

  • Ma N, Matsunaga S, Takata H, Ono-Maniwa R, Uchiyama S, Fukui K (2007) Nucleolin functions in nucleolus formation and chromosome congression. J Cell Sci 120:2091–2105

    Article  PubMed  CAS  Google Scholar 

  • Magoulas C, Zatsepìna O, Jordan PWH, Jordan G, Freíd M (1998) The SURF-6 protein is a component of the nucleolar matrix and has a high binding capacity for nucleic acids in vitro. Eur J Cell Biol 75:174–183

    Article  PubMed  CAS  Google Scholar 

  • Margalit A, Brachner A, Gotzmann J, Foisner R, Gruenbaum Y (2007) Barrier-to-autointegration factor – a BAFfling little protein. Trends Cell Biol 17:202–208

    Article  PubMed  CAS  Google Scholar 

  • Masuda K, Takahashi S, Nomura K, Arimoto M, Inoue M (1993) Residual structure and constituent proteins of the peripheral framework of the cell nucleus in somatic embryos from Daucus carota. L Planta 191:523–540

    Article  Google Scholar 

  • Masuda K, Xu ZJ, Takahasi S, Ito A, Ono M, Nomura K, Inoue M (1997) Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long α-helical domain Exp Cell Res 232:173–181

    Article  PubMed  CAS  Google Scholar 

  • Mattagajasingh SN, Huang SC, Harternstein J, Snyder M, Marchesi VT, Benz EJ Jr (1999) A non erythroid isoform of protein 4.1R interacts with the nuclear mitotic apparatus (NuMA) protein. J Cell Biol 145:29–43

    Article  PubMed  CAS  Google Scholar 

  • McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ (2006) Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations J Cell Biol 172:541–552

    Article  PubMed  CAS  Google Scholar 

  • McNulty AK, Saunders MJ (1992) Purification and immunological detection of pea nuclear intermediate filaments: evidence for plant nuclear lamins. J Cell Sci 103:407–414

    PubMed  CAS  Google Scholar 

  • Meagher RB, Fechheimer M (2003) The Arabidopsis. In: cytoskeletal genomeSomerville CR, Meyerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville, MD, pp 1–26, doi:10.119/tab.0096

    Google Scholar 

  • Meier I, Phelan T, Gruissem W, Spiker S, Schneider D (1996) MFP1, a novel plant filament-like protein with affinity for matrix attachment region DNA. Plant Cell 8:2105–2115

    Article  PubMed  CAS  Google Scholar 

  • Melcer S, Gruenbaum Y, Krhone G (2007) Invertebrate lamins. Exp Cell Res 313:2157–2166

    Article  PubMed  CAS  Google Scholar 

  • Mínguez A, Moreno Díaz de la Espina S (1993) Inmunological characterization of lamins in the nuclear matrix of onion cells. J Cell Sci 106:431–439

    PubMed  Google Scholar 

  • Mínguez A, Moreno Díaz de la Espina S (1996) In situ localization of nucleolin in the plant nuclear matrix. Exp Cell Res 222:171–178

    Article  PubMed  Google Scholar 

  • Moreno Diaz de la Espìna S (1995) Nuclear matrix isolated from plant cells. In: Berezney R, Jeon KW (eds) Int Rev Cytol, vol. 162B. Academic, San Diego, pp 75–139

    Google Scholar 

  • Moreno Díaz de la Espina S, Mínguez A (1996) Post-mitotic assembly of the nucleolus. I. The internal matrix network is a recruitment site for processing nucleolar components in prenucleolar bodies. Chrom Res 4:103–110

    Article  PubMed  Google Scholar 

  • Moriguchi K, Suzuki T, Ito Y, Yamazaki Y, Niwa Y, Kurata N (2005) Functional isolation of novel nuclear proteins showing a variety of subnuclear localizations. Plant Cell 17:389–403

    Article  PubMed  CAS  Google Scholar 

  • Morisawa G, Han-Yama A, Moda I, Tamai A, Iwabuchi M, Meshi T (2000) AHM1 a novel type of nuclear matrix localized, MAR binding protein with a single AT hook and a J domain-homologous region. Plant Cell 12:1903–1916

    Article  PubMed  CAS  Google Scholar 

  • Naetar N, Hutter S, Dorner D, Dechat T, Korbei B, Gotzman J, Beug H, Foisner R (2007) LAP2α-binding protein LINT-25 is a novel chromatin-associated protein involved in cell cycle exit J Cell Sci 120:737–747

    Article  PubMed  CAS  Google Scholar 

  • Nalepa G, Harper JW (2004) Visualization of a highly organized intranuclear network of filaments in living mammalian cells. Cell Motil Cytoskel 59:94–108

    Article  CAS  Google Scholar 

  • Nickerson JS (2001) Experimental observations of a nuclear matrix. J Cell Sci 114:463–474

    PubMed  CAS  Google Scholar 

  • Pandey A, Choudhary MK, Bhushan D, Chattopadhyay A, Chakraborty S, Datta A, Chakraborty N (2006) The nuclear proteome of chickpea (Cicer arietinum. L.) reveals predicted and unexpected proteins J Proteome Res. 5:3301–3311

    Article  PubMed  CAS  Google Scholar 

  • Pendle AF, Clark GP, Boon R, Lewandoska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw P (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Article  PubMed  CAS  Google Scholar 

  • Pliss A, Koberna K, Vecerova J, Malinsky J, Masata M, Fialova M, Raska I, Berezney R (2005) Spatio-temporal dynamics at rDNA foci: global switching between DNA replication and transcription. J Cell Biochem 94:554–565

    Article  PubMed  CAS  Google Scholar 

  • Polzikov M, Zatsepìna O, Magoulas C (2005) Identification of an evolutionary conserved SURF-6 domain in a family of nucleolar proteins extending from human to yeast. Biochem Biophys Res Comm 327:143–149

    Article  PubMed  CAS  Google Scholar 

  • Pontvianne F, Matía I, Douet J, Tourmente S, Medina FJ, Echeverría M, Saéz-Vázquez J (2007) Characterization of AtNUC-L1. reveals a central role of nucleolin in nucleolus organization and silencing of AtNUC-L2 gene in Arabidopsis Mol Biol Cell 18:369–379

    Article  PubMed  CAS  Google Scholar 

  • Prieto JL, McStay B (2007) Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev 21:2041–2054

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Rath U, Wang D, Xu YZ, Ding Y, Zhang W, Blacketer MJ, Paddy MR, Girton J, Johansen J, Johansen KM (2004) Megator, an essential coiled-coil protein that localizes to the putative spindle matrix during mitosis in Drosophila. Mol Biol Cell 15:4854–4865

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Rath U, Wang D, Xu YZ, Ding Y, Blacketer MJ, Girton J, Johansen J, Johansen KM (2005) EAST interacts with megator and localizes to the putative spindle matrix during mitosis in Drosophila. J Cell Biochem 95:1284–1291

    Article  PubMed  CAS  Google Scholar 

  • Rath U, Wang D, Ding Y, Xu YZ, Qi H, Blacketer MJ, Girton J, Johansen J, Johansen KM (2004) Chromator a novel and essential chromodomain protein interacts directly with the putative spindle matrix protein skeletor. J Cell Biochem 93:1033–1047

    Article  PubMed  CAS  Google Scholar 

  • Rath U, Ding Y, Deng H, Qi H, Bao X, Zhang W, Girton J, Johansen J, Johansen KM (2006) The chromodomain protein chromator interacts with JIL-1 kinase and regulates the structure of Drosophila. polytene chromosomes J Cell Sci 119:2332–2341

    Article  PubMed  CAS  Google Scholar 

  • Rose A, Gindullis F, Meier I (2003) A novel alpha-helical protein, specific to and highly conserved in plants, is associated with the nuclear matrix. J Exp Bot 54:1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Samaniego R, Jeong SY, De la Torre C, Meier I, Moreno Díaz de la Espina S (2006) CK2 phosphorylation weakens 90-kDa MFP1 association to the nuclear matrix in Allium cepa. J Exp Bot 57:101–111

    Google Scholar 

  • Schirmer EC, Foisner R (2007) Proteins that associate with lamins: many faces, many functions. Exp Cell Res 313:2167–2169

    Article  PubMed  CAS  Google Scholar 

  • Schonenberger CA, Buchmeier S, Boerries M, Sütterlin R, Aebi U, Jockusch BM (2005) Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J Struct Biol 152:157–168

    Article  CAS  Google Scholar 

  • Shaklai S, Amariglio N, Rechavi G, Simon AJ (2007) Gene silencing at the nuclear periphery. FEBS J 274:1383–1392

    Article  PubMed  CAS  Google Scholar 

  • Shaw P, Doonan J (2005) The nucleolus. Playing by different rules? Cell Cycle 4:102–105

    Article  PubMed  CAS  Google Scholar 

  • Shumaker DK, Kuczmarski ER, Goldman RD (2003) The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curr Opin Cell Biol 15:358–366

    Article  PubMed  CAS  Google Scholar 

  • Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S (2007) The mRNA-like noncoding RNA Gomafu constitutes a novel domain in a subset of neurons. J Cell Sci 120:2498–2506

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Fujiwara T, Kanno M (2007) Nucleolar protein NOP25 is involved in nucleolar architecture. Biochem Biophys Res Comm 358:1114–1119

    Article  PubMed  CAS  Google Scholar 

  • Tzur YB, Wilson KL, Gruenbaum Y (2006) SUN-domain proteins: “Velcro” that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol 7:782–788

    Article  PubMed  CAS  Google Scholar 

  • Uzbekov R, Timirbulatova E, Watrin E, Cubizolles F, Ogereau D, Gulak P, Legagneux V, Polyakov WJ, Le Guellec K, Kireev I (2003) Nucleolar association of pEg7 and XCAP-E, two members of the Xenopus laevis. condensin complex in interphase cells J Cell Sci 116:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Vlcek S, Foisner R (2007) A-type lamin networks in light of laminopathic diseases. Biochim Biophys Acta 1773:661–674

    Article  PubMed  CAS  Google Scholar 

  • Walker DL, Wang D, Jin Y, Wang Y, Johansen J, Johansen KM (2000) Skeletor, a novel chromosomal protein that redistributes during mitosis provides evidence for the formation of a spindle matrix. J Cell Biol 151:1401–1411

    Article  PubMed  CAS  Google Scholar 

  • Wasser M, Chia W (2000) The EAST protein of Drosophila. controls an expandable nuclear endoskeleton Nat Cell Biol 2:268–275

    Article  PubMed  CAS  Google Scholar 

  • Wasser M, Chia W (2005) EAST interacts with Megator and localizes to the putative spindle matrix during mitosis in Drosophila. J Cell Biochem 95:1284–1291

    Article  CAS  Google Scholar 

  • Xu XM, Rose A, Muthuswamy S, Jeong SY, Venkatakrishnan S, Zhao Q, Meier I (2007) NUCLEAR PORE ANCHOR, the Arabidopsis. homolog of Tpr/Mlp1/Mlp2/Megator, is involved in mRNA export and SUMO homeostasis and affects divers aspects of plant development Plant Cell 19:1537–1548

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Zhao J, Hoffmann-Rohrer U, Grummt I (2008) Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev 22:322–330

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Moreno Díaz de la Espina S (1999) The plant nucleoskeleton: ultrastructural organization and identification of NuMA homologues in the nuclear matrix and mitotic spindle of plant cells. Exp Cell Res 246:516–526

    Article  PubMed  CAS  Google Scholar 

  • Zastrow MS, Flaherty DB, Venían GM, Wilson KL (2006) Nuclear Titin interacts with A- and B-type lamins in vitro and in vivo. J Cell Sci 119:239–249

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Ragnauth CD, Skepper JN, Worth NF, Warren DT, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM (2005) Nesprin-2 is a multiisomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 118:673–687

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Tsai MY (2006) The mitotic spindle matrix. A fibro-membranous lamin connection. Cell Cycle 5:2345–2347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank my former and present students who collaborated in collection of the data concerning the onion nucleoskeleton: A. Mínguez, W. Yu, R. Samaniego, F. Novillo, H. Li, J.R. Cruz and C. Pérez-Munive, and M. Carnota for expert technical assistance. This work was supported by Spanish DGI project BFU 2007–60142/BFI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Moreno Díaz de la Espina .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Moreno Díaz de la Espina, S. (2008). The Nucleoskeleton. In: Plant Cell Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2008_26

Download citation

  • DOI: https://doi.org/10.1007/7089_2008_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics