Skip to main content

Cartilage Repair by Mesenchymal Stem Cell-Derived Exosomes: Preclinical and Clinical Trial Update and Perspectives

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 12

Abstract

Osteoarthritis (OA) and other degenerative joint diseases are characterized by articular cartilage destruction, synovial inflammation, sclerosis of subchondral bone, and loss of extracellular matrix (ECM). Worldwide, these diseases are major causes of disability. Cell therapies have been considered to be the best therapeutic strategies for long-term treatment of articular cartilage diseases. It has been suggested that the mechanism of stem cell-based therapy is related to paracrine secretion of extracellular vesicles (EVs), which are recognized as the main secretion factors of stem cells. EVs, and in particular the subclass exosomes (Exos), are novel therapeutic approaches for treatment of cartilage lesions and OA. The results of recent studies have shown that EVs isolated from mesenchymal stem cells (MSCs) could inhibit OA progression. EVs isolated from various stem cell sources, such as MSCs, may contribute to tissue regeneration of the limbs, skin, heart, and other tissues. Here, we summarize recent findings of preclinical and clinical studies on different MSC-derived EVs and their effectiveness as a treatment for damaged cartilage. The Exos isolation techniques in OA treatment are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACI:

Autologous chondrocyte implantation

ADMSCs:

Adipose-derived MSCs

AFM:

Atomic force microscopy

DLS:

Dynamic light scattering

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assays

EVs:

Extracellular vesicles

GFP:

Green fluorescent protein

GMP:

Good manufacturing practice

HA:

Hyaluronic acid

IPFP:

Infrapatellar fat pad

iPSCs :

Induced pluripotent stem cells

MACI:

Matrix-induced autologous chondrocyte implantation

MMP :

Matrix metalloproteinase

MSCs:

Mesenchymal stem cell

MVs:

Microvesicles

NPCs:

Nucleus pulposus cells

NTA:

Nanoparticle tracking analysis

OA:

Osteoarthritis

PCs:

Progenitor cells

PRP:

Platelet-rich plasma

SEM:

Scanning electron microscopy

STR:

Short tandem repeat

TEM:

Transmission electron microscopy

TFF:

Tangential flow filtration

References

  • Ahmed N et al (2007) Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. Cell Physiol Biochem 20(5):665–678

    Article  CAS  PubMed  Google Scholar 

  • Asik M et al (2008) The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy 24(11):1214–1220

    Article  PubMed  Google Scholar 

  • Bang OY, Kim EH (2019) Mesenchymal stem cell-derived extracellular vesicle therapy for stroke: challenges and progress. Front Neurol 10:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Becerra J et al (2011) The stem cell niche should be a key issue for cell therapy in regenerative medicine. Stem Cell Rev Rep 7(2):248–255

    Article  PubMed  Google Scholar 

  • Bexkens R et al (2017) Clinical outcome after arthroscopic debridement and microfracture for osteochondritis dissecans of the capitellum. Am J Sports Med 45(10):2312–2318

    Article  PubMed  Google Scholar 

  • Bhosale AM, Richardson JB (2008) Articular cartilage: structure, injuries and review of management. Br Med Bull 87:77–95

    Article  PubMed  Google Scholar 

  • Blonda M et al (2018) New insights into immune cell-derived extracellular vesicles in multiple sclerosis. Front Neurol 9:604

    Article  PubMed  PubMed Central  Google Scholar 

  • Bobick BE et al (2009) Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today 87(4):351–371

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester SJ et al (1997) Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop 21(5):313–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwmeester P et al (1999) Histological and biochemical evaluation of perichondrial transplants in human articular cartilage defects. J Orthop Res 17(6):843–849

    Article  CAS  PubMed  Google Scholar 

  • Brittberg M et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  CAS  PubMed  Google Scholar 

  • Brittberg M et al (1996) Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res 326:270–283

    Article  Google Scholar 

  • Brittberg M et al (2003) Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am 85A(Suppl 3):109–115

    Article  Google Scholar 

  • Brittberg M et al (2016) Cartilage repair in the degenerative ageing knee. Acta Orthop 87(Sup 363):26–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Brouwer RW et al (2014) Osteotomy for treating knee osteoarthritis. Cochrane Database Syst Rev 12:CD004019

    Google Scholar 

  • Buckwalter JA (2002) Articular cartilage injuries. Clin Orthop Relat Res 402:21–37

    Article  Google Scholar 

  • Burger D et al (2015) Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes. Am J Pathol 185(8):2309–2323

    Article  CAS  PubMed  Google Scholar 

  • Carranza-Bencano A et al (1999) Comparative study of the reconstruction of articular cartilage defects with free costal perichondrial grafts and free tibial periosteal grafts: an experimental study on rabbits. Calcif Tissue Int 65(5):402–407

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2018) Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells. Stem Cell Res Ther 9(1):318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P et al (2019) Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics 9(9):2439–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Schorey JS (2013) Exosomes carrying mycobacterial antigens can protect mice against Mycobacterium tuberculosis infection. Eur J Immunol 43(12):3279–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng A et al (2014) Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl Med 3(11):1287–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang ER et al (2016) Allogeneic mesenchymal stem cells in combination with hyaluronic acid for the treatment of osteoarthritis in rabbits. PLoS One 11(2):e0149835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chijimatsu R et al (2017) Characterization of mesenchymal stem cell-like cells derived from human iPSCs via neural crest development and their application for osteochondral repair. Stem Cells Int 2017:1960965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiriaco MS et al (2018) Lab-on-chip for exosomes and microvesicles detection and characterization. Sensors (Basel) 18(10):3175

    Article  CAS  Google Scholar 

  • Chu CR et al (2018) Minimally manipulated bone marrow concentrate compared with microfracture treatment of full-thickness chondral defects: a one-year study in an equine model. J Bone Joint Surg Am 100(2):138–146

    Article  PubMed  Google Scholar 

  • Colao IL et al (2018) Manufacturing exosomes: a promising therapeutic platform. Trends Mol Med 24(3):242–256

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Naranjo JC, Wu HJ, Ugaz VM (2017) Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 17(21):3558–3577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corso G et al (2017) Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Sci Rep 7(1):11561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cosenza S et al (2017) Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 7(1):16214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Windt TS et al (2017) Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells 35(1):256–264

    Article  PubMed  CAS  Google Scholar 

  • Di Rocco G, Baldari S, Toietta G (2016) Towards therapeutic delivery of extracellular vesicles: strategies for in vivo tracking and biodistribution analysis. Stem Cells Int 2016:5029619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duchamp de Lageneste O et al (2018) Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 9(1):773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebrahimi A, Hosseini SA, Rahim F (2014) Immunosuppressive therapy in allograft transplantation: from novel insights and strategies to tolerance and challenges. Cent Eur J Immunol 39(3):400–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckstein F et al (1996) Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med 36(2):256–265

    Article  CAS  PubMed  Google Scholar 

  • Ferrara D et al (2018) Role of extracellular vesicles in amyotrophic lateral sclerosis. Front Neurosci 12:574

    Article  PubMed  PubMed Central  Google Scholar 

  • Fickert S et al (2012) One-year clinical and radiological results of a prospective, investigator-initiated trial examining a novel, purely autologous 3-dimensional autologous chondrocyte transplantation product in the knee. Cartilage 3(1):27–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Filardo G et al (2015) Platelet-rich plasma: why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration. Knee Surg Sports Traumatol Arthrosc 23(9):2459–2474

    Article  CAS  PubMed  Google Scholar 

  • Fisher JN et al (2017) The application of stem cells from different tissues to cartilage repair. Stem Cells Int 2017:2761678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galieva LR et al (2019) Therapeutic potential of extracellular vesicles for the treatment of nerve disorders. Front Neurosci 13:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Gimona M et al (2017) Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int J Mol Sci 18(6):1190

    Article  PubMed Central  CAS  Google Scholar 

  • Greening DW et al (2015) A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol 1295:179–209

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK et al (2016) Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel(R)): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res Ther 18(1):301

    Article  PubMed  PubMed Central  Google Scholar 

  • Hangody L, Fules P (2003) Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 85-A(Suppl 2):25–32

    Article  Google Scholar 

  • Hangody L et al (1998) Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 21(7):751–756

    Article  CAS  PubMed  Google Scholar 

  • Haraszti RA et al (2018) Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther 26(12):2838–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Homminga GN et al (1990) Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg Br 72(6):1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Huang T, He J (2017) Characterization of extracellular vesicles by size-exclusion high-performance liquid chromatography (HPLC). Methods Mol Biol 1660:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard MJ (1996) Articular debridement versus washout for degeneration of the medial femoral condyle. A five-year study. J Bone Joint Surg Br 78(2):217–219

    Article  CAS  PubMed  Google Scholar 

  • Iranifar E et al (2019) Exosomes and microRNAs: new potential therapeutic candidates in Alzheimer disease therapy. J Cell Physiol 234(3):2296–2305

    Article  CAS  PubMed  Google Scholar 

  • Jiang XC, Gao JQ (2017) Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 521(1–2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Jin Y et al (2018) Extracellular vesicles secreted by human adipose-derived stem cells (hASCs) improve survival rate of rats with acute liver failure by releasing lncRNA H19. EBioMedicine 34:231–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim N, Cho SG (2015) New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells 8(1):54–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DK et al (2013) EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles 2013:2

    Google Scholar 

  • Ko JY et al (2014) In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials 35(11):3571–3581

    Article  CAS  PubMed  Google Scholar 

  • Kotaka S et al (2017) Magnetic targeted delivery of induced pluripotent stem cells promotes articular cartilage repair. Stem Cells Int 2017:9514719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kozhemyakina E, Lassar AB, Zelzer E (2015) A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 142(5):817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan AP et al (1991) Macromolecular organization of chicken type X collagen in vitro. J Cell Biol 114(3):597–604

    Article  CAS  PubMed  Google Scholar 

  • Kwon H et al (2019) Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol 15(9):550–570

    Article  PubMed  PubMed Central  Google Scholar 

  • La Greca A et al (2018) Extracellular vesicles from pluripotent stem cell-derived mesenchymal stem cells acquire a stromal modulatory proteomic pattern during differentiation. Exp Mol Med 50(9):119

    Article  PubMed Central  CAS  Google Scholar 

  • Lee J et al (2015) Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells. FASEB J 29(8):3399–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lespasio MJ et al (2017) Knee osteoarthritis: a primer. Perm J 21:16–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Leyh M et al (2014) Osteoarthritic cartilage explants affect extracellular matrix production and composition in cocultured bone marrow-derived mesenchymal stem cells and articular chondrocytes. Stem Cell Res Ther 5(3):77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li P et al (2017) Progress in exosome isolation techniques. Theranostics 7(3):789–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L et al (2018) Mesenchymal stem cells in combination with hyaluronic acid for articular cartilage defects. Sci Rep 8(1):9900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X et al (2019) Challenges and opportunities in exosome research-perspectives from biology, engineering, and cancer therapy. APL Bioeng 3(1):011503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim J et al (2019) Direct isolation and characterization of circulating exosomes from biological samples using magnetic nanowires. J Nanobiotechnol 17(1):1

    Article  Google Scholar 

  • Liu C, Su C (2019) Design strategies and application progress of therapeutic exosomes. Theranostics 9(4):1015–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X et al (2017) Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale 9(13):4430–4438

    Article  CAS  PubMed  Google Scholar 

  • Lo Monaco M et al (2018) Stem cells for cartilage repair: preclinical studies and insights in translational animal models and outcome measures. Stem Cells Int 2018:9079538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Logli AL et al (2019) Osteochondritis dissecans lesions of the capitellum in overhead athletes: a review of current evidence and proposed treatment algorithm. Curr Rev Musculoskelet Med 12(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu K et al (2017) Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res Ther 8(1):108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu L et al (2019) Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res Ther 10(1):143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lukomska B et al (2019) Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019:9628536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo Z et al (2015) Mechano growth factor (MGF) and transforming growth factor (TGF)-beta3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 52:463–475

    Article  CAS  PubMed  Google Scholar 

  • Luo Y et al (2017) The minor collagens in articular cartilage. Protein Cell 8(8):560–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J et al (2018) Bone marrow mesenchymal stem cells reduce ureteral stricture formation in a rat model via the paracrine effect of extracellular vesicles. J Cell Mol Med 22(9):4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manferdini C et al (2013) Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum 65(5):1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Matsusue Y, Yamamuro T, Hama H (1993) Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9(3):318–321

    Article  CAS  PubMed  Google Scholar 

  • Medvedeva EV et al (2018) Repair of damaged articular cartilage: current approaches and future directions. Int J Mol Sci 19(8):2366

    Article  PubMed Central  CAS  Google Scholar 

  • Meyer U et al (2012) Cartilage defect regeneration by ex vivo engineered autologous microtissue – preliminary results. In Vivo 26(2):251–257

    PubMed  Google Scholar 

  • Mitchell R et al (2019) Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res Ther 10(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  • Mithoefer K et al (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87(9):1911–1920

    Article  PubMed  Google Scholar 

  • Mithoefer K et al (2012) Evolution and current role of autologous chondrocyte implantation for treatment of articular cartilage defects in the football (soccer) player. Cartilage 3(1 Suppl):31S–36S

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyaki S et al (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60(9):2723–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobasheri A et al (2017) The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 13(5):302–311

    Article  CAS  PubMed  Google Scholar 

  • Mora JC, Przkora R, Cruz-Almeida Y (2018) Knee osteoarthritis: pathophysiology and current treatment modalities. J Pain Res 11:2189–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller P, Lemcke H, David R (2018) Stem cell therapy in heart diseases – cell types, mechanisms and improvement strategies. Cell Physiol Biochem 48(6):2607–2655

    Article  PubMed  CAS  Google Scholar 

  • Musial-Wysocka A, Kot M, Majka M (2019) The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant 28(7):801–812

    Article  PubMed  PubMed Central  Google Scholar 

  • Nam Y et al (2018) Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int 2018:8490489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nasiri N et al (2019) Targeted cell delivery for articular cartilage regeneration and osteoarthritis treatment. Drug Discov Today 24(11):2212–2224

    Article  CAS  PubMed  Google Scholar 

  • Navabi H et al (2005) Preparation of human ovarian cancer ascites-derived exosomes for a clinical trial. Blood Cells Mol Dis 35(2):149–152

    Article  CAS  PubMed  Google Scholar 

  • Negoro T et al (2018) Trends in clinical trials for articular cartilage repair by cell therapy. NPJ Regen Med 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Nejadnik H et al (2015) Improved approach for chondrogenic differentiation of human induced pluripotent stem cells. Stem Cell Rev Rep 11(2):242–253

    Article  CAS  PubMed  Google Scholar 

  • Nicolas C et al (2016) Stem cell therapies for treatment of liver disease. Biomedicine 4(1):2

    Google Scholar 

  • Nooshabadi VT et al (2018) The extracellular vesicles-derived from mesenchymal stromal cells: a new therapeutic option in regenerative medicine. J Cell Biochem 119(10):8048–8073

    Article  CAS  PubMed  Google Scholar 

  • Ong SG, Wu JC (2015) Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration. Circ Res 117(1):7–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onuora S (2016) Regenerative medicine: a nose for cartilage repair. Nat Rev Rheumatol 12(12):691

    Article  CAS  PubMed  Google Scholar 

  • Ozeki N et al (2016) Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthr Cartil 24(6):1061–1070

    Article  CAS  Google Scholar 

  • Pang B et al (2020) Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics 10(5):2309–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pers YM et al (2016) Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase i dose-escalation trial. Stem Cells Transl Med 5(7):847–856

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson L et al (2003) Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am 85A(Suppl 2):17–24

    Article  Google Scholar 

  • Platas J et al (2013) Conditioned media from adipose-tissue-derived mesenchymal stem cells downregulate degradative mediators induced by interleukin-1beta in osteoarthritic chondrocytes. Mediat Inflamm 2013:357014

    Article  CAS  Google Scholar 

  • Properzi F, Logozzi M, Fais S (2013) Exosomes: the future of biomarkers in medicine. Biomark Med 7(5):769–778

    Article  CAS  PubMed  Google Scholar 

  • Qi H et al (2019) Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways. In Vitro Cell Dev Biol Anim 55(3):203–210

    Article  PubMed  CAS  Google Scholar 

  • Qin Set al (1996) Folk medicine of the Qiang nationality. Zhongguo Zhong Yao Za Zhi 21(8):453–456, 509

    Google Scholar 

  • Qu C et al (2013) Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int J Biochem Cell Biol 45(8):1802–1812

    Article  CAS  PubMed  Google Scholar 

  • Rana A, Zhang Y, Esfandiari L (2018) Advancements in microfluidic technologies for isolation and early detection of circulating cancer-related biomarkers. Analyst 143(13):2971–2991

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak MZ et al (2014) New advances in stem cell research: practical implications for regenerative medicine. Pol Arch Med Wewn 124(7–8):417–426

    PubMed  Google Scholar 

  • Ren K (2019) Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology 107(3):271–284

    Article  CAS  PubMed  Google Scholar 

  • Reza-Zaldivar EE et al (2018) Potential effects of MSC-derived exosomes in neuroplasticity in Alzheimer’s disease. Front Cell Neurosci 12:317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rim KT, Kim SJ (2016) Quantitative analysis of exosomes from murine lung cancer cells by flow cytometry. J Cancer Prev 21(3):194–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Rota C, Morigi M, Imberti B (2019) Stem cell therapies in kidney diseases: progress and challenges. Int J Mol Sci 20(11):2790

    Article  CAS  PubMed Central  Google Scholar 

  • Rovira J et al (2017) Therapeutic application of extracellular vesicles in acute and chronic renal injury. Nefrologia 37(2):126–137

    Article  PubMed  Google Scholar 

  • Ryan JA et al (2009) Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine. J Tissue Eng Regen Med 3(2):107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito T et al (2015) Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells. Biomed Res 36(3):179–186

    Article  PubMed  Google Scholar 

  • Satue M et al (2019) Intra-articularly injected mesenchymal stem cells promote cartilage regeneration, but do not permanently engraft in distant organs. Sci Rep 9(1):10153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schultz W, Gobel D (1999) Articular cartilage regeneration of the knee joint after proximal tibial valgus osteotomy: a prospective study of different intra- and extra-articular operative techniques. Knee Surg Sports Traumatol Arthrosc 7(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Seo Y, Kim HS, Hong IS (2019) Stem cell-derived extracellular vesicles as immunomodulatory therapeutics. Stem Cells Int 2019:5126156

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen G (2005) The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res 8(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Modica-Napolitano JS, Singh KK (2017) Defining the momiome: promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol 47:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GD, Knutsen G, Richardson JB (2005) A clinical review of cartilage repair techniques. J Bone Joint Surg Br 87(4):445–449

    Article  CAS  PubMed  Google Scholar 

  • Smith JT et al (2018) Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples. Lab Chip 18(24):3913–3925

    Article  CAS  PubMed  Google Scholar 

  • Soler R et al (2016) Final results of a phase I-II trial using ex vivo expanded autologous mesenchymal stromal cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee 23(4):647–654

    Article  PubMed  Google Scholar 

  • Solheim E et al (2016) Results at 10-14 years after microfracture treatment of articular cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 24(5):1587–1593

    Article  PubMed  Google Scholar 

  • Steinwachs M (2009) New technique for cell-seeded collagen-matrix-supported autologous chondrocyte transplantation. Arthroscopy 25(2):208–211

    Article  PubMed  Google Scholar 

  • Szatanek R et al (2017) The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci 18(6):1153

    Article  PubMed Central  CAS  Google Scholar 

  • Tao SC et al (2017) Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 7(1):180–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tofino-Vian M et al (2018) Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes. Cell Physiol Biochem 47(1):11–25

    Article  CAS  PubMed  Google Scholar 

  • Toghraie FS et al (2011) Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in rabbit. Knee 18(2):71–75

    Article  CAS  PubMed  Google Scholar 

  • Umeda K et al (2012) Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci Rep 2:455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vonk LA et al (2018) Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics 8(4):906–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CH, Cherng WJ, Verma S (2008) Drawbacks to stem cell therapy in cardiovascular diseases. Futur Cardiol 4(4):399–408

    Article  CAS  Google Scholar 

  • Wang M et al (2017a) Advances and prospects in stem cells for cartilage regeneration. Stem Cells Int 2017:4130607

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2017b) Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther 8(1):189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson DC et al (2016) Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 105:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y et al (2012) Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur Cell Mater 23:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willms E et al (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6:22519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J et al (2019) miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials 206:87–100

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Li Y, Chopp M (2014) Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 8:377

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X et al (2015) Full-thickness cartilage defects are repaired via a microfracture technique and intraarticular injection of the small-molecule compound kartogenin. Arthritis Res Ther 17:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan IK et al (2018) Use of a hollow fiber bioreactor to collect extracellular vesicles from cells in culture. Methods Mol Biol 1740:35–41

    Article  CAS  PubMed  Google Scholar 

  • Yang VK et al (2017) Circulating exosome microRNA associated with heart failure secondary to myxomatous mitral valve disease in a naturally occurring canine model. J Extracell Vesicles 6(1):1350088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshimura H et al (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327(3):449–462

    Article  CAS  PubMed  Google Scholar 

  • Yu H et al (2020) Potential roles of exosomes in Parkinson’s disease: from pathogenesis, diagnosis, and treatment to prognosis. Front Cell Dev Biol 8:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W et al (2016a) Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 4:15040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S et al (2016b) Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil 24(12):2135–2140

    Article  CAS  Google Scholar 

  • Zhang L et al (2018a) Exosomal miRNA profiling to identify nanoparticle phagocytic mechanisms. Small 14(15):e1704008

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y et al (2018b) Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. Mater Sci Eng C Mater Biol Appl 88:79–87

    Article  CAS  PubMed  Google Scholar 

  • Zhao X et al (2017) Chondrogenesis by bone marrow-derived mesenchymal stem cells grown in chondrocyte-conditioned medium for auricular reconstruction. J Tissue Eng Regen Med 11(10):2763–2773

    Article  CAS  PubMed  Google Scholar 

  • Zwolanek D et al (2017) Tracking mesenchymal stem cell contributions to regeneration in an immunocompetent cartilage regeneration model. JCI Insight 2(20):e87322

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Amin Shamekhi or Mohamadreza Baghaban Eslaminejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taghiyar, L., Jahangir, S., Khozaei Ravari, M., Shamekhi, M.A., Eslaminejad, M.B. (2021). Cartilage Repair by Mesenchymal Stem Cell-Derived Exosomes: Preclinical and Clinical Trial Update and Perspectives. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 12. Advances in Experimental Medicine and Biology(), vol 1326. Springer, Cham. https://doi.org/10.1007/5584_2021_625

Download citation

Publish with us

Policies and ethics