Skip to main content

Immune Dysregulation and Recurring Mutations in Myelodysplastic Syndromes Pathogenesis

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 12

Abstract

Myelodysplastic syndromes (MDS) are clonal stem cell malignancies characterized by ineffective hematopoiesis leading to peripheral cytopenias and variable risk of progression to acute myeloid leukemia. Inflammation is associated with MDS pathogenesis. Several cytokines, reactive species of oxygen/nitrogen and growth factors are directly or indirectly involved in dysfunction of the MDS bone marrow (BM) microenvironment. Mutations in genes mainly regulating RNA splicing, DNA methylation and chromatin accessibility, transcription factors, signal transduction and the response to DNA damage contribute to ineffective hematopoiesis, genomic instability and MDS development. The inflammation-associated DNA damage in hematopoietic stem cells may also contribute to MDS development and progression with aggressive clinical characteristics. Many studies have aimed at clarifying mechanisms involved in the activity of immature myeloid cells as powerful modulators of the immune response and their correlation with aging, autoimmunity, and development of cancer. In this review, we explore recent advances and accumulating evidence uniting immune dysregulation, inflammaging and recurring mutations in the pathogenesis of MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

acute myeloid leukemia

ARG1:

arginase 1

ASXL1:

Additional Sex Combs Like 1, Transcriptional Regulator

BM:

bone marrow

CBL:

Casitas B-Lineage Lymphoma Proto-Oncogene

CCUS:

clonal cytopenia of undetermined significance

CD:

cluster of differentiation

CHIP:

clonal hematopoiesis of indeterminate potential

CSF:

colony-stimulating factor

DAMP:

danger-associated molecular pattern

del:

deletion

DNA:

deoxyribonucleic acid

DNMT3A:

DNA methyltransferase 3A

eMDSC:

early MDSC

ETV6:

ETS Variant Transcription Factor 6

EZH2:

Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit

G:

granulocytic

GATA2:

GATA Binding Protein 2

GM:

granulocyte-monocyte

HLA:

human leukocyte antigen

HSPC:

hematopoietic stem/progenitor cell

IDH1/2:

isocitrate dehydrogenases 1 and 2

IFN-γ:

interferon gamma

IL:

interleukin

IMC:

immature myeloid cell

iNOS:

inducible nitric oxide synthase

IPSS:

International prognostic scoring system

JAK2:

Janus Kinase 2

L-Arg:

L-arginine

M:

monocytic

MDS:

myelodysplastic syndromes

MDSC:

myeloid-derived suppressor cell

miR:

micro RNA

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

NK:

natural killer

NKT:

natural killer/T

NO:

nitric oxide

NRAS:

Neuroblastoma RAS Viral (V-Ras) Oncogene Homolog

PAMP:

pathogen-associated molecular pattern

PGE2:

prostaglandin E2

PMN:

polymorphonuclear

PPM1D:

Protein Phosphatase, Mg2+/Mn2+ Dependent 1D

RAD21:

RAD21 Cohesin Complex Component

RNA:

ribonucleic acid

ROS:

reactive oxygen species

RUNX1:

RUNX Family Transcription Factor 1

S100A8:

S100 Calcium Binding Protein A8

S100A9:

S100 Calcium Binding Protein A9

SF3B1:

Splicing Factor 3b Subunit 1

SRSF2:

Serine And Arginine Rich Splicing Factor 2

STAG2:

Stromal Antigen 2

TAM:

tumour-associated macrophage

TCR:

T-cell receptor

TET2:

Ten-Eleven Translocation Methylcytosine Dioxygenase 2

TGF-β:

transforming growth factor beta

TIFAB:

TRAF-Interacting Protein with Forkhead-Associated Domain, Family Member B

TIRAP:

Toll-interleukin-1 receptor domain-containing adaptor protein

TLR:

Toll-like receptor

TME:

tumour microenvironment

TNF-α:

tumour necrosis factor alpha

TP53:

Tumour Protein P53

TRAF:

tumor necrosis factor receptor-associated factor

Treg:

regulatory T-cell

U2AF1:

U2 Small Nuclear RNA Auxiliary Factor 1

VEGF:

vascular endothelial growth factor

WT1:

Wilms tumour 1

ZRSR2:

Zinc Finger CCCH-Type, RNA Binding Motif And Serine/Arginine Rich 2

References

  • Banerjee T, Calvi LM, Becker MW et al (2019) Flaming and fanning: the spectrum of inflammatory influences in myelodysplastic syndromes. Blood Rev 36:57–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Barreyro L, Chlon TM, Starczynowski DT (2018) Chronic immune response dysregulation in MDS pathogenesis. Blood 132(15):1553–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basiorka AA, McGraw KL, Eksioglu EA, Chen X, Johnson J, Zhang L, Zhang Q, Irvine BA, Cluzeau T, Sallman DA, Padron E, Komrokji R, Sokol L, Coll RC, Robertson AA, Cooper MA, Cleveland JL, O’Neill LA, Wei S, List AF (2016) The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood 128(25):2960–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronte V, Brandau S, Chen SH et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature 7:12150

    CAS  Google Scholar 

  • Cargo CA, Rowbotham N, Evans PA et al (2015) Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression. Blood 126(21):2362–2365

    Article  CAS  PubMed  Google Scholar 

  • Cazzola M (2020) Myelodysplastic syndromes. N Engl J Med 383(14):1358–1374

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N, Epling-Burnette P, Van Bijen S, Dolstra H, Cannon J, Youn J, Donatelli SS, Qin D, De Witte T, Tao J, Wang H, Cheng P, Gabrilovich DI, List A, Wei S (2013) Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 123(11):4596–4611

    Google Scholar 

  • Chesney JA, Mitchell RA, Yaddanapudi K (2017) Myeloid-derived suppressor cells- a new therapeutic target to overcome resistance to cancer immunotherapy. J Leukoc Biol 102(3):727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claus R, Lubbert M (2003) Epigenetic targets in hematopoietic malignancies. Oncogene 22(42):6489–6496

    Article  CAS  PubMed  Google Scholar 

  • Consonni FM, Porta C, Marino A et al (2019) Myeloid-derived suppressor cells: ductile targets in disease. Front Immunol 10:949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook EK, Luo M, Rauh MJ (2020) Clonal hematopoiesis and inflammation: partners in leukemogenesis and comorbidity. Exp Hematol 83:85–94

    Article  CAS  PubMed  Google Scholar 

  • Corey SJ, Minden MD, Barber DL et al (2007) Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer 7(2):118–129

    Article  CAS  PubMed  Google Scholar 

  • Cull AH, Rauh MJ (2017) Success in bone marrow failure? Novel therapeutic directions based on the immune environment of myelodysplastic syndromes. J Leukoc Biol 102(2):209–219

    Article  CAS  PubMed  Google Scholar 

  • Cull AH, Snetsinger B, Buckstein R, Wells RA, Rauh MJ (2017) Tet2 restrains inflammatory gene expression in macrophages. Exp Hematol 55:56–70.e13

    Article  CAS  PubMed  Google Scholar 

  • Cull AH, Mahendru D, Snetsinger B et al (2018) Overexpression of Arginase 1 is linked to DNMT3A and TET2 mutations in lower-grade myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res 65:5–13

    Article  CAS  PubMed  Google Scholar 

  • de Matos AG, Ribeiro Junior HL, de Paula BD et al (2017) Interleukin-8 and nuclear factor kappa B are increased and positively correlated in myelodysplastic syndrome. Med Oncol 34(10):168

    Article  PubMed  CAS  Google Scholar 

  • Eksioglu EA, Chen X, Heider K-H, Rueter B, McGraw KL, Basiorka AA, Wei M, Burnette A, Cheng P, Lancet J, Komrokji R, Djeu J, List A, Wei S (2017) Novel therapeutic approach to improve hematopoiesis in low risk MDS by targeting MDSCs with the Fc-engineered CD33 antibody BI 836858. Leukemia 31(10):2172–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrone CK, Blydt-Hansen M, Rauh MJ (2020) Age-associated TET2 mutations: common drivers of myeloid dysfunction, cancer and cardiovascular disease. Int J Mol Sci 21(2):626

    Article  CAS  PubMed Central  Google Scholar 

  • Filipazzi P, Huber V, Rivoltini L (2012) Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother 61(2):255–263

    Article  CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived-suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI, Bronte V, Chen SH et al (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganan-Gomez I, Wei Y, Starczynowski DT et al (2015) Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 29(7):1458–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenthoj A, Orskov AD, Hansen JW et al (2016) Immune mechanisms in myelodysplastic syndrome. Int J Mol Sci 17(6):944

    Article  PubMed Central  CAS  Google Scholar 

  • Hosono N (2019) Genetic abnormalities and pathophysiology of MDS. Int J Clin Oncol 24(8):885–892

    Article  CAS  PubMed  Google Scholar 

  • Issa JP (2010) Epigenetic changes in the myelodysplastic syndrome. Hematol Oncol Clin North Am 24(2):317–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang HJ, Fu R, Wang HQ, Li LJ, Qu W, Liang Y, Wang GJ, Wang XM, Wu YH, Liu H, Song J, Guan J, Xing LM, Ruan EB, Shao ZH (2013) Increased circulating of myeloid-derived suppressor cells in myelodysplastic syndrome. Chin Med J 126(13):2582–2584

    PubMed  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  • Kerbauy DB, Joachim H (2007) Apoptosis and anti-apoptotic mechanisms in the progression of MDS. Exp Hematol 35(11):1739–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King KY, Huang Y, Nakada D, Goodell MA (2020) Environmental influences on clonal hematopoiesis. Exp Hematol 83:66–73

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood KL, Zhang L, Thiyagarajan R et al (2018) Myeloid-derived suppressor cells at the intersection of inflammaging and bone fragility. Immunol Investig 47:844–854

    Article  CAS  Google Scholar 

  • Kittang AO, Kordasti S, Sand KE, Constantini B, Kramer AM, Perezabellan P, Seidl T, Rye KP, Hagen KM, Kulasekararaj A, Bruserud O, Mufti GJ (2015) Expansion of myeloid-derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Onco Targets Ther 5(2):e1062208

    Google Scholar 

  • Kornblau SM, McCue D, Singh N et al (2010) Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood 116(20):4251–4261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Patel S, Tcyganov E, Gabrilovich D (2016a) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Patel S, Toyganov E, Gabrilovich DI (2016b) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok B, Hall JM, Witte S et al (2015) MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood 126(21):2355–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisha A, Mu S, Wang Y et al (2018) Prognostic role of myeloid-derived suppressor cells in cancers: a systematic review and meta-analysis. BMC Cancer 18:1220

    Article  CAS  Google Scholar 

  • Lopez-Bujanda Z, Drake CG (2017) Myeloid-derived cells in prostate cancer progression: phenotype and prospective therapies. J Leukoc Bio 102(2):393–406

    Article  CAS  Google Scholar 

  • Malcovati L, Galli A, Travaglino E, Ambaglio I, Rizzo E, Molteni E, Elena C, Ferretti VV, Catricala S, Bono E, Todisco G, Bianchessi A, Rumi E, Zibellini S, Pietra D, Boveri E, Camaschella C, Toniolo D, Papaemmanuil E, Ogawa S, Cazzola M (2017) Clinical significance of somatic mutation in unexplained blood cytopenia. Blood 129(25):3371–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malcovati L, Stevenson K, Papaemmanuil E, Neuberg D, Bejar R, Boultwood J, Bowen DT, Campbell PJ, Ebert BL, Fenaux P, Haferlach T, Heuser M, Jansen JH, Komrokji RS, Maciejewski JP, Walter MJ, Fontenay M, Garcia-Manero G, Graubert TA, Karsan A, Meggendorfer M, Pellagatti A, Sallman DA, Savona MR, Sekeres MA, Steensma DP, Tauro S, Thol F, Vyas P, Van de Loosdrecht AA, Haase D, Tuchler H, Greenberg PL, Ogawa S, Hellstrom-Lindberg E, Cazzola M (2020) SF3B1-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood 136(2):157–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125(9):3356–3364

    Article  PubMed  PubMed Central  Google Scholar 

  • Muto T, Walker CS, Choi K, Hueneman K, Smith MA, Gul Z, Garcia-Manero G, Ma A, Zheng Y, Starczynowski DT (2020) Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nat Immunol 21(5):535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadal C, Beguin J, Benchekroun G, Le Roux D (2018) The myeloid derived suppressor cells: Who are they? Can they be used as a diagnostic tool to investigate metastasis in veterinary medicine? Comp Immunol Microbiol Infect Dis 61:5–8

    Article  PubMed  Google Scholar 

  • Najjar YG, Finke JH (2013) Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front Oncol 3:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Park DS, Akuffo AA, Muench DE et al (2019) Clonal hematopoiesis of indeterminate potential and its impact on patient trajectories after stem cell transplantation. PLoS Comput Biol 15:e1006913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawelec G, Verschoor CP, Ostrand-Rosenberg S (2019) Myeloid-derived suppressor cells: not only in tumor immunity. Front Immunol 10:1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollyea DA, Harris C, Rabe JL, Hedin BR, De Arras L, Katz S, Wheeler E, Bejar R, Walter MJ, Jordan CT, Pietras EM, Alper S (2019) Myelodysplastic syndrome-associated spliceosome gene mutations enhance innate immune signaling. Haematologica 104(9):e388–e392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza A, Galili N (2012) The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Nat Rev Cancer 12(12):849–859

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SO, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506

    Article  CAS  Google Scholar 

  • Safarzadeh E, Hashemzadeh S, Duijf PHG et al (2019) Circulating myeloid-derived suppressor cells: an independent prognostic factor in patients with breast cancer. J Cell Physiol 234(4):3515–3525

    Article  CAS  PubMed  Google Scholar 

  • Sallman DA, List A (2019) The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes. Blood 133(10):1039–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kaarniranta K, Kauppinen A (2019a) Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 76(10):1901–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kauppinen A, Kaarniranta K (2019b) AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J Mol Med 97(8):1049–1064

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel JM, Young K, Trowbridge JJ (2020) Hand in hand: intrinsic and extrinsic drivers of aging and clonal hematopoiesis. Exp Hematol:S0301-472X(20)30562–2

    Google Scholar 

  • Sarhan D, Brandt L, Felices M, Guldevall K, Lenvik T, Hinderlie P, Curtsinger J, Warlick E, Spellman SR, Blazar BR, Weisdorf DJ, Cooley S, Vallera DA, Onfelt B, Miller JS (2018) 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv 2(12):1459–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid MC, Varner JA (2012) Myeloid cells in tumor inflammation. Vasc Cell 4(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekeres MA (2010) The epidemiology of myelodysplastic syndromes. Hematol Oncol Clin North Am 24(2):287–294

    Article  PubMed  Google Scholar 

  • Xin S, Yanhua Z, Li X et al (2019) The inflammatory cytokine profile of myelodysplastic syndromes. A meta-analysis. Medicine 98:22 (e15844

    Google Scholar 

  • Sica A, Massarotti M (2017) Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun 85:117–125

    Article  CAS  PubMed  Google Scholar 

  • Sloand EM, Melenhorst JJ, Tucker ZC, Pfannes L, Brenchley JM, Yong A, Visconte V, Wu C, Gostick E, Scheinberg P, Olnes MJ, Douek DC, Price DA, Barrett AJ, Young NS (2011) T-cell immune responses to Wilms tumor 1 protein in myelodysplasia responsive to immunosuppressive therapy. Blood 117(9):2691–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, Gordon-Mitchell S, Von Ahrens D, Pradhan K, Steeples V, Kim S, Steidl U, Walter M, Fraser IDC, Kulkarni A, Salomonis N, Komurov K, Boultwood J, Verma A, Starczynowski DT (2019) U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol 21(5):640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling AS, Gibson CJ, Ebert BL (2017) The genetics of myelodysplastic syndrome: from clonal hematopoiesis to secondary leukemia. Nat Rev Cancer 17:5–19

    Article  CAS  PubMed  Google Scholar 

  • Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, Buckstein R, Lam W, Humphries RK, Karsan A (2010) Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 16(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126(1):9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcyganov E, Mastio J, Chen E, Gabrilovich DI (2018) Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol 51:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umansky V, Blattner C, Gebhardt C et al (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4(4):pii: E36

    Article  CAS  Google Scholar 

  • Valka J, Veselaa J, Votavova H et al (2019) Genetic variant screening of DNA repair genes in myelodysplastic syndrome identifies a novel mutation in the XRCC2 gene. Oncol Res Treat 42:263–268

    Article  CAS  PubMed  Google Scholar 

  • Varney ME, Niederkorn M, Konno H, Matsumura T, Gohda J, Yoshida N, Akiyama T, Christie S, Fang J, Miller D, Jerez A, Karsan A, Maciejewski JP, Meetei RA, Inoue J, Starczynowski DT (2015) Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of toll-like receptor-TRAF6 signaling. J Exp Med 212(11):1967–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19(2):108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Chang WY, Wong SC et al (2013) Increased myeloid-derived suppressor cells in gastric Cancer correlate with Cancer stage and plasma S100A8/A9 Proinflammatory proteins. J Immunol 190(2):794–804

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yang Y, Gao S et al (2018) Immune dysregulation in myelodysplastic syndrome: clinical features, pathogenesis and therapeutic strategies. Crit Rev Oncol Hematol 122:123–132

    Article  PubMed  Google Scholar 

  • Weber R, Fleming V, Hu X et al (2018) Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front Immunol 9:1310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winter S, Shoaie S, Kordasti S, Platzbecker U (2020) Integrating the “Immunome” in the stratification of myelodysplastic syndromes and future clinical trial design. J Clin Oncol 38(15):1723–1735

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Qian Y, Eksioglu E et al (2015) The inflammatory microenvironment in MDS. Cell Mol Life Sci 72(10):1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Yoshizato T, Dumitriu D, Hosokawa K et al (2015) Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med 373:35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Rauh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matos, A., Magalhães, S.M.M., Rauh, M.J. (2020). Immune Dysregulation and Recurring Mutations in Myelodysplastic Syndromes Pathogenesis. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 12. Advances in Experimental Medicine and Biology(), vol 1326. Springer, Cham. https://doi.org/10.1007/5584_2020_608

Download citation

Publish with us

Policies and ethics