Skip to main content
Log in

Genetic abnormalities and pathophysiology of MDS

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid malignancies characterized by peripheral blood cytopenia and dishematopoiesis and frequently progress to acute myeloid leukemia. Genetic defects play a major role in pathogenesis of MDS, including cytogenetic abnormalities, gene mutations, and abnormal gene expression. Chromosomal abnormalities have been detected in approximately 50–60% of MDS patients, including the deletions of chromosome 5q and 7q, trisomy 8, and complex karyotypes. Newer genomic technologies, such as single-nucleotide polymorphism array and next-generation sequencing, revealed the heterozygous deletions resulting in haploinsufficient gene expression (e.g., CSNK1A1, DDX41 on chromosome 5, CUX1, LUC7L2, EZH2 on chromosome 7) involved in the pathogenesis of MDS. In addition, recurrent somatic mutations in more than 50 genes have been identified in 80–90% of MDS. The most recurrent genetic mutations are involved in the RNA splicing (e.g., SF3B1, SRSF2, U2AF1, ZRSR2, LUC7L2, DDX41) and epigenetic modifications, such as histone modification (e.g., ASXL1, EZH2) and DNA methylation (e.g., TET2, DNMT3A, IDH1/IDH2). TP53 mutation is associated with aggressive disease and frequently coincides with deletion of chromosome 5q. This review summarizes the recent progress in molecular pathogenesis of MDS. A better understanding of the specific subgroups of MDS patients will also aid in the development of new therapeutic approach for MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pellagatti A, Boultwood J (2015) The molecular pathogenesis of the myelodysplastic syndromes. Eur J Haematol 95:3–15

    Article  CAS  Google Scholar 

  2. Gondek LP, Tiu R, O'Keefe CL et al (2008) Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 111:1534–1542

    Article  CAS  Google Scholar 

  3. Brunning R, Orazi A, Germing U et al (2008) Myelodysplastic syndromes/neoplasms, overview. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyon, pp 88–93

    Google Scholar 

  4. Yoshida K, Sanada M, Shiraishi Y et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:64–69

    Article  CAS  Google Scholar 

  5. Greenberg PL, Tuechler H, Schanz J et al (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120:2454–2465

    Article  CAS  Google Scholar 

  6. Sole F, Espinet B, Sanz GF et al (2000) Incidence, characterization and prognostic significance of chromosomal abnormalities in 640 patients with primary myelodysplastic syndromes. Grupo Cooperativo Espanol de Citogenetica Hematologica. Br J Haematol 108:346–356

    Article  CAS  Google Scholar 

  7. Boultwood J, Fidler C, Strickson AJ et al (2002) Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood 99:4638–4641

    Article  CAS  Google Scholar 

  8. Jerez A, Gondek LP, Jankowska AM et al (2012) Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. J Clin Oncol 30:1343–1349

    Article  Google Scholar 

  9. Patnaik MM, Lasho TL, Finke CM et al (2010) WHO-defined 'myelodysplastic syndrome with isolated del(5q)' in 88 consecutive patients: survival data, leukemic transformation rates and prevalence of JAK2, MPL and IDH mutations. Leukemia 24:1283–1289

    Article  CAS  Google Scholar 

  10. Nimer SD (2006) Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol 24:2576–3282

    Article  CAS  Google Scholar 

  11. Grimwade D, Walker H, Oliver F et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The medical research council adult and children's leukaemia working parties. Blood 92:2322–2333

    CAS  Google Scholar 

  12. Byrd JC, Mrozek K, Dodge RK et al (2002) Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100:4325–4336

    Article  CAS  Google Scholar 

  13. Lai F, Godley LA, Joslin J et al (2001) Transcript map and comparative analysis of the 1.5-Mb commonly deleted segment of human 5q31 in malignant myeloid diseases with a del(5q). Genomics 71:235–245

    Article  CAS  Google Scholar 

  14. Ebert BL, Pretz J, Bosco J et al (2008) Identification of RPS14 as a 5q-syndrome gene by RNA interference screen. Nature 451:335–339

    Article  CAS  Google Scholar 

  15. Starczynowski DT, Kuchenbauer F, Argiropoulos B et al (2010) Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat Med 16:49–58

    Article  CAS  Google Scholar 

  16. Schneider RK, Adema V, Heckl D et al (2014) Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS. Cancer Cell 26:509–520

    Article  CAS  Google Scholar 

  17. Krönke J, Fink EC, Hollenbach PW et al (2015) Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523:183–188

    Article  Google Scholar 

  18. Soncini C, Berdo I, Draetta G (2001) Ras-GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease. Oncogene 20:3869–3879

    Article  CAS  Google Scholar 

  19. Hosono N, Makishima H, Mahfouz R et al (2017) Recurrent genetic defects on chromosome 5q in myeloid neoplasms. Oncotarget 8:6483–6495

    PubMed  Google Scholar 

  20. Polprasert C, Schulze I, Sekeres MA et al (2015) Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 27:658–670

    Article  CAS  Google Scholar 

  21. Maciejewski JP, Padgett RA, Brown AL et al (2017) DDX41-related myeloid neoplasia. Semin Hematol 54:94–97

    Article  Google Scholar 

  22. Jädersten M, Saft L, Pellagatti A et al (2009) Clonal heterogeneity in the 5q-syndrome: p53 expressing progenitors prevail during lenalidomide treatment and expand at disease progression. Haematologica 94:1762–1766

    Article  Google Scholar 

  23. Möllgård L, Saft L, Treppendahl MB et al (2011) Clinical effect of increasing doses of lenalidomide in high-risk myelodysplastic syndrome and acute myeloid leukemia with chromosome 5 abnormalities. Haematologica 96:963–971

    Article  Google Scholar 

  24. Kantarjian H, O'Brien S, Ravandi F et al (2009) The heterogeneous prognosis of patients with myelodysplastic syndrome and chromosome 5 abnormalities. Cancer 115:5202–5209

    Article  Google Scholar 

  25. Okamoto K, Li HY, Jensen MR et al (2002) Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell 9:761–771

    Article  CAS  Google Scholar 

  26. Bernasconi P, Klersy C, Boni M et al (2005) Incidence and prognostic significance of karyotype abnormalities in de novo primary myelodysplastic syndromes: a study on 331 patients from a single institution. Leukemia 19:1424–1431

    Article  CAS  Google Scholar 

  27. Haase D, Germing U, Schanz J et al (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110:4385–4395

    Article  CAS  Google Scholar 

  28. Schanz J, Tuchler H, Sole F et al (2012) New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 30:820–829

    Article  Google Scholar 

  29. Jerez A, Sugimoto Y, Makishima H et al (2015) Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood 119:6109–6117

    Article  Google Scholar 

  30. Hosono N, Makishima H, Jerez A et al (2014) Recurrent genetic defects on chromosome 7q in myeloid neoplasms. Leukemia 28:1348–1351

    Article  CAS  Google Scholar 

  31. Wong CC, Martincorena I, Rust AG et al (2014) Inactivating CUX1 mutations promote tumorigenesis. Nat Genet 46:33–38

    Article  CAS  Google Scholar 

  32. McNerney ME, Brown CD, Wang X et al (2013) CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood 121:975–983

    Article  CAS  Google Scholar 

  33. Papaemmanuil E, Gerstung M, Malcovati L et al (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122:3616–3627

    Article  CAS  Google Scholar 

  34. Ramdzan ZM, Pal R, Kaur S (2015) The function of CUX1 in oxidative DNA damage repair is needed to prevent premature senescence of mouse embryo fibroblasts. Oncotarget 6:3613–3626

    Article  Google Scholar 

  35. Ramdzan ZM, Nepveu A (2014) CUX1, a haploinsufficient tumour suppressor gene overexpressed in advanced cancers. Nat Rev Cancer 14:673–682

    Article  CAS  Google Scholar 

  36. Puig O, Bragado-Nilsson E, Koski T et al (2007) The U1 snRNP-associated factor Luc7p affects 5' splice site selection in yeast and human. Nucleic Acids Res 35:5874–5885

    Article  CAS  Google Scholar 

  37. Hershberger CE, Hosono N, Singh J et al (2016) (2016) The role of LUC7L2 in splicing and MDS. Blood 128:5504

    Google Scholar 

  38. Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 10:697–708

    Article  CAS  Google Scholar 

  39. Ernst T, Chase AJ, Score J et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726

    Article  CAS  Google Scholar 

  40. Nikoloski G, Langemeijer SM, Kuiper RP et al (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42:665–667

    Article  CAS  Google Scholar 

  41. Makishima H, Jankowska AM, Tiu RV et al (2010) Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia 24:1799–1804

    Article  CAS  Google Scholar 

  42. Nagamachi A, Matsui H, Asou H et al (2013) Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell 24:305–317

    Article  CAS  Google Scholar 

  43. Inaba T, Honda H, Matsui H et al (2018) The enigma of monosomy 7. Blood 131:2891–2898

    Article  CAS  Google Scholar 

  44. Paulsson K, Säll T, Fioretos T et al (2001) The incidence of trisomy 8 as a sole chromosomal aberration in myeloid malignancies varies in relation to gender, age, prior iatrogenic genotoxic exposure, and morphology. Cancer Genet Cytogenet 130:160–165

    Article  CAS  Google Scholar 

  45. Nilsson L, Åstrand-Grundström I, Anderson K et al (2002) Involvement and functional impairment of the CD34+ CD38− Thy-1+ hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood 100:259–267

    CAS  PubMed  Google Scholar 

  46. de Souza Fernandez T, Ornellas MH, de Carvalho LO et al (2000) Chromosomal alterations associated with evolution from myelodysplastic syndrome to acute myeloid leukemia. Leuk Res 24:839–848

    Article  Google Scholar 

  47. Sloand EM, Pfannes L, Chen G et al (2007) CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins. Blood 109:2399–2405

    Article  CAS  Google Scholar 

  48. Makishima H, Yoshizato T, Yoshida K et al (2017) Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet 49:204–212

    Article  CAS  Google Scholar 

  49. Wahl MC, Will CL, Lührmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  CAS  Google Scholar 

  50. Graubert TA, Shen D, Ding L et al (2011) Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 44:53–57

    Article  Google Scholar 

  51. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, Kantarjian H, Raza A, Levine RL, Neuberg D, Ebert BL (2011) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364:2496–2506

    Article  CAS  Google Scholar 

  52. Score J, Hidalgo-Curtis C, Jones AV et al (2012) Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood 119:1208–1213

    Article  CAS  Google Scholar 

  53. Ueda T, Sanada M, Matsui H et al (2012) EED mutants impair polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms. Leukemia 26:2557–2560

    Article  CAS  Google Scholar 

  54. Khan SN, Jankowska AM, Mahfouz R et al (2013) Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 27:1301–1309

    Article  CAS  Google Scholar 

  55. Shi J, Wang E, Zuber J et al (2013) The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;NrasG12D acute myeloid leukemia. Oncogene 32:930–938

    Article  CAS  Google Scholar 

  56. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  Google Scholar 

  57. Boultwood J, Perry J, Pellagatti A et al (2010) Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 24:1062–1065

    Article  CAS  Google Scholar 

  58. Yang H, Kurtenbach S, Guo Y et al (2018) Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood 131:328–341

    Article  CAS  Google Scholar 

  59. Walter MJ, Ding L, Shen D et al (2011) Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25:1153–1158

    Article  CAS  Google Scholar 

  60. Genovese G, Kahler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487

    Article  Google Scholar 

  61. Delhommeau F, Dupont S, Della Valle V et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 2009:2289–2301

    Article  Google Scholar 

  62. Ko M, Huang Y, Jankowska AM et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843

    Article  CAS  Google Scholar 

  63. Yamazaki J, Taby R, Vasanthakumar A et al (2012) Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia. Epigenetics 7:201–207

    Article  CAS  Google Scholar 

  64. Lin CC, Hou HA, Chou WC et al (2014) IDH mutations are closely associated with mutations of DNMT3A, ASXL1 and SRSF2 in patients with myelodysplastic syndromes and are stable during disease evolution. Am J Hematol 89:137–144

    Article  CAS  Google Scholar 

  65. DiNardo CD, Jabbour E, Ravandi F et al (2016) IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia 30:980–984

    Article  CAS  Google Scholar 

  66. Haferlach T, Nagata Y, Grossmann V et al (2014) Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28:241–247

    Article  CAS  Google Scholar 

  67. Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066

    Article  CAS  Google Scholar 

  68. Prensner JR, Chinnaiyan AM (2011) Metabolism unhinged: IDH mutations in cancer. Nat Med 17:291–293

    Article  CAS  Google Scholar 

  69. Bejar R, Stevenson KE, Caughey B, Lindsley RC et al (2014) Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stemcell transplantation. J Clin Oncol 32:2691–2698

    Article  Google Scholar 

  70. Montalban-Bravo G, Takahashi K, Patel K, Wang F et al (2018) Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/ myeloproliferative neoplasms. Oncotarget 9:9714–9727

    Article  Google Scholar 

  71. Jadersten M, Saft L, Smith A, Kulasekararaj A et al (2011) TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 29:1971–1979

    Article  Google Scholar 

  72. Scharenberg C, Giai V, Pellagatti A, Saft L et al (2017) Progression in patients with low- and intermediate-1-risk del(5q) myelodysplastic syndromes is predicted by a limited subset of mutations. Haematologica 102:498–508

    Article  CAS  Google Scholar 

  73. Lindsley RC, Mar BG, Mazzola E, Grauman PV et al (2015) Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125:1367–1376

    Article  CAS  Google Scholar 

  74. Wong TN, Miller CA, Jotte MRM, Bagegni N et al (2018) Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat Commun 9:455

    Article  Google Scholar 

  75. Welch JS, Petti AA, Miller CA et al (2016) TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med 375:2023–2036

    Article  CAS  Google Scholar 

  76. Welch JS, Petti AA, Ley TJ (2017) Decitabine in TP53-mutated AML. N Engl J Med 376:797–798

    Article  Google Scholar 

  77. Bykov VJ, Issaeva N, Shilov A et al (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8:282–288

    Article  CAS  Google Scholar 

  78. Kwok B, Hall JM, Witte JS et al (2015) MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood 126:2355–2361

    Article  CAS  Google Scholar 

  79. Steensma DP, Bejar R, Jaiswal S et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First and foremost, the author would like to thank Professor Jaroslaw P. Maciejewski, Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH and Professor Hideki Makishima, Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University. This work was supported by JSPS KAKENHI Grant Number JP 16K09844 and The Naito Foundation Naito Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Hosono.

Ethics declarations

Conflict of interest

No author has any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard tojurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosono, N. Genetic abnormalities and pathophysiology of MDS. Int J Clin Oncol 24, 885–892 (2019). https://doi.org/10.1007/s10147-019-01462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-019-01462-6

Keywords

Navigation