Skip to main content

Hydration and Mobility in Lipid Bilayers Probed by Time-Dependent Fluorescence Shift

  • Chapter
  • First Online:
Fluorescent Methods to Study Biological Membranes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

Biological membranes as an indispensable part of living organisms are permanently surrounded by the molecules of water. The presence of water is essential for maintaining their structure and functionality. Therefore, lipid bilayer hydration, mobility of the hydrated lipids, and their changes upon perturbations are appealing characteristics in the lipid membrane research. Time-dependent fluorescent shift (TDFS) measurements enable probing these properties in biologically relevant fully hydrated liquid crystalline lipid bilayers with a simple instrumentation and easy data treatment. Since the native lipid molecules do not fluoresce naturally, the extrinsic probing with a suitable fluorescent dye is necessary. There are a number of fluorescent membrane polarity probes designed for this purpose with different spectral properties and locations within the lipid bilayer. The basics of the technique are explained together with some useful additional considerations. The convenience of the TDFS method is demonstrated with examples from recent research on the study of the interactions of ions with lipid bilayers, and the monitoring of mobility and hydration changes along the bilayer normal upon addition of the oxidized phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hogberg CJ, Lyubartsev AP (2006) A molecular dynamics investigation of the influence of hydration and temperature on structural and dynamical properties of a dimyristoylphosphatidylcholine bilayer. J Phys Chem B 110(29):14326–14336

    Article  Google Scholar 

  2. Milhaud J (2004) New insights into water-phospholipid model membrane interactions. Biochim Biophys Acta 1663(1–2):19–51

    CAS  Google Scholar 

  3. Berntsen P, Svanberg C, Swenson J (2011) Interplay between hydration water and headgroup dynamics in lipid bilayers. J Phys Chem B 115(8):1825–1832

    Article  CAS  Google Scholar 

  4. Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A (1997) Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: location, geometry, and lipid-lipid bridging via hydrogen-bonded water. J Phys Chem A 101(20):3677–3691

    Article  CAS  Google Scholar 

  5. Volke F, Eisenblatter S, Galle J, Klose G (1994) Dynamic properties of water at phosphatidylcholine lipid-bilayer surfaces as seen by deuterium and pulsed field gradient proton NMR. Chem Phys Lipids 70(2):121–131

    Article  CAS  Google Scholar 

  6. Borle F, Seelig J (1983) Hydration of Escherichia coli lipids: deuterium T1 relaxation time studies of phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta 735(1):131–136

    Article  CAS  Google Scholar 

  7. Sparrman T, Westlund PO (2003) An NMR line shape and relaxation analysis of heavy water powder spectra of the L-alpha, L-beta ′ and P-beta ′ phases in the DPPC/water system. Phys Chem Chem Phys 5(10):2114–2121

    Article  CAS  Google Scholar 

  8. Finer EG, Darke A (1974) Phospholipid hydration studied by deuteron magnetic resonance spectroscopy. Chem Phys Lipids 12(1):1–16

    Article  CAS  Google Scholar 

  9. Franks NP, Lieb WR (1979) Structure of lipid bilayers and the effects of general anesthetics: an X-ray and neutron-diffraction study. J Mol Biol 133(4):469–500

    Article  CAS  Google Scholar 

  10. Simon SA, Mcintosh TJ, Latorre R (1982) Influence of cholesterol on water penetration into bilayers. Science 216(4541):65–67

    Article  CAS  Google Scholar 

  11. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469(3):159–195

    Article  CAS  Google Scholar 

  12. Ge MT, Freed JH (2003) Hydration, structure, and molecular interactions in the headgroup region of dioleoylphosphatidylcholine bilayers: an electron spin resonance study. Biophys J 85(6):4023–4040

    Article  CAS  Google Scholar 

  13. Volkov VV, Nuti F, Takaoka Y, Chelli R, Papini AM, Righini R (2006) Hydration and hydrogen bonding of carbonyls in dimyristoyl-phosphatidylcholine bilayer. J Am Chem Soc 128(29):9466–9471

    Article  CAS  Google Scholar 

  14. Volkov VV, Takaoka Y, Righini R (2009) What are the sites water occupies at the interface of a phospholipid membrane? J Phys Chem B 113(13):4119–4124

    Article  CAS  Google Scholar 

  15. Mazeres S, Schram V, Tocanne JF, Lopez A (1996) 7-nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: differences in fluorescence behavior. Biophys J 71(1):327–335

    Article  CAS  Google Scholar 

  16. Chattopadhyay A (2003) Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem Phys Lipids 122(1–2):3–17

    Article  CAS  Google Scholar 

  17. Bernik DL, Zubiri D, Tymczyszyn E, Disalvo EA (2001) Polarity and packing at the carbonyl and phosphate regions of lipid bilayers. Langmuir 17(21):6438–6442

    Article  CAS  Google Scholar 

  18. Zhou F, Schulten K (1995) Molecular dynamics study of a membrane-water interface. J Phys Chem 99(7):2194–2207

    Article  CAS  Google Scholar 

  19. Zubrzycki IZ, Xu Y, Madrid M, Tang P (2000) Molecular dynamics simulations of a fully hydrated dimyristoylphosphatidylcholine membrane in liquid-crystalline phase. J Chem Phys 112(7):3437–3441

    Article  CAS  Google Scholar 

  20. Horng ML, Gardecki JA, Papazyan A, Maroncelli M (1995) Subpicosecond measurements of polar solvation dynamics – Coumarin-153 revisited. J Phys Chem 99(48):17311–17337

    Article  CAS  Google Scholar 

  21. Maroncelli M, Fleming GR (1987) Picosecond solvation dynamics of Coumarin-153 – the importance of molecular aspects of solvation. J Chem Phys 86(11):6221–6239

    Article  CAS  Google Scholar 

  22. Lakowicz JR (2006) Principles of fluorescent spectroscopy, 3rd edn. Springer, Singapore

    Book  Google Scholar 

  23. Chapman CF, Fee RS, Maroncelli M (1995) Measurements of the solute dependence of solvation dynamics in 1-propanol: the role of specific hydrogen-bonding interactions. J Phys Chem 99(13):4811–4819

    Article  CAS  Google Scholar 

  24. Jurkiewicz P, Sýkora J, Olżyńska A, Humplickova J, Hof M (2005) Solvent relaxation in phospholipid bilayers: principles and recent applications. J Fluoresc 15(6):883–894

    Article  CAS  Google Scholar 

  25. Sýkora J, Kapusta P, Fidler V, Hof M (2002) On what time scale does solvent relaxation in phospholipid bilayers happen? Langmuir 18(3):571–574

    Article  CAS  Google Scholar 

  26. Sýkora J, Slavíček P, Jungwirth P, Barucha J, Hof M (2007) Time-dependent stokes shifts of fluorescent dyes in the hydrophobic backbone region of a phospholipid bilayer: combination of fluorescence spectroscopy and ab initio calculations. J Phys Chem B 111(21):5869–5877

    Article  CAS  Google Scholar 

  27. Jurkiewicz P, Cwiklik L, Jungwirth P, Hof M (2012) Lipid hydration and mobility: an interplay between fluorescence solvent relaxation experiments and molecular dynamics simulations. Biochimie 94(1):26–32

    Article  CAS  Google Scholar 

  28. Jurkiewicz P, Olżyńska A, Langner M, Hof M (2006) Headgroup hydration and mobility of DOTAP/DOPC bilayers: a fluorescence solvent relaxation study. Langmuir 22(21):8741–8749

    Article  CAS  Google Scholar 

  29. Sýkora J, Mudogo V, Hutterer R, Nepras M, Vanerka J, Kapusta P, Fidler V, Hof M (2002) ABA-C-15: a new dye for probing solvent relaxation in phospholipid bilayers. Langmuir 18(24):9276–9282

    Article  CAS  Google Scholar 

  30. Richert R (2002) Heterogeneous solvent dynamics and time-resolved optical linewidths. J Non-Cryst Solids 307:50–56

    Article  Google Scholar 

  31. Yang M, Richert R (2001) Observation of heterogeneity in the nanosecond dynamics of a liquid. J Chem Phys 115(6):2676–2680

    Article  CAS  Google Scholar 

  32. Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Femtosecond solvation dynamics of water. Nature 369(6480):471–473

    Article  CAS  Google Scholar 

  33. Hutterer R, Schneider FW, Sprinz H, Hof M (1996) Binding and relaxation behaviour of Prodan and Patman in phospholipid vesicles: a fluorescence and H-1 NMR study. Biophys Chem 61(2–3):151–160

    Article  CAS  Google Scholar 

  34. Hutterer R, Schneider FW, Hermens WT, Wagenvoord R, Hof M (1998) Binding of prothrombin and its fragment 1 to phospholipid membranes studied by the solvent relaxation technique. Biochim Biophys Acta 1414(1–2):155–164

    CAS  Google Scholar 

  35. Hof M, Hutterer R, Perez N, Ruf H, Schneider FW (1994) Influence of vesicle curvature on fluorescence relaxation kinetics of fluorophores. Biophys Chem 52(2):165–172

    Article  CAS  Google Scholar 

  36. Hutterer R, Schneider FW, Lanig H, Hof M (1997) Solvent relaxation behaviour of n-anthroyloxy fatty acids in PC-vesicles and paraffin oil: a time-resolved emission spectra study. Biochim Biophys Acta 1323(2):195–207

    Article  CAS  Google Scholar 

  37. Krishna MMG (1999) Excited-state kinetics of the hydrophobic probe Nile red in membranes and micelles. J Phys Chem A 103(19):3589–3595

    Article  CAS  Google Scholar 

  38. Pal SK, Sukul D, Mandal D, Sen S, Bhattacharyya K (2000) Solvation dynamics of DCM in dipalmitoyl phosphatidylcholine lipid. Tetrahedron 56(36):6999–7002

    Article  CAS  Google Scholar 

  39. Langner M, Kubica K (1999) The electrostatics of lipid surfaces. Chem Phys Lipids 101(1):3–35

    Article  CAS  Google Scholar 

  40. Lis LJ, Mcalister M, Fuller N, Rand RP, Parsegian VA (1982) Interactions between neutral phospholipid bilayer membranes. Biophys J 37(3):657–665

    CAS  Google Scholar 

  41. Damodaran KV, Merz KM (1993) Head group-water interactions in lipid bilayers: a comparison between DMPC- and DLPE-based lipid bilayers. Langmuir 9(5):1179–1183

    Article  CAS  Google Scholar 

  42. McIntosh TJ, Simon SA (1986) Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25(17):4948–4952

    Article  CAS  Google Scholar 

  43. Grdadolnik J, Kidric J, Hadzi D (1991) Hydration of phosphatidylcholine reverse micelles and multilayers – an infrared spectroscopic study. Chem Phys Lipids 59(1):57–68

    Article  CAS  Google Scholar 

  44. Blume A, Hubner W, Messner G (1988) Fourier transform infrared spectroscopy of C13:O labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry 27(21):8239–8249

    Article  CAS  Google Scholar 

  45. Bursing H, Ouw D, Kundu S, Vohringer P (2001) Probing solvation dynamics in liquid water and at phospholipid/water interfaces with femtosecond photon-echo spectroscopies. Phys Chem Chem Phys 3(12):2378–2387

    Article  CAS  Google Scholar 

  46. Perochon E, Lopez A, Tocanne JF (1992) Polarity of lipid bilayers. A fluorescence investigation. Biochemistry 31(33):7672–7682

    Article  CAS  Google Scholar 

  47. Hof M (1999) Solvent relaxation in biomembranes. In: Rettig W, Strehmel B, Schrader S (eds) Applied fluorescence in chemistry, biology, and medicine. Springer, Berlin, pp 439–456

    Chapter  Google Scholar 

  48. Krasnowska EK, Gratton E, Parasassi T (1998) Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74(4):1984–1993

    Article  CAS  Google Scholar 

  49. Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60(1):179–189

    Article  CAS  Google Scholar 

  50. Hofmeister F (1888) Arch Exp Pathol Pharmacol 24(4–5):247–260

    Google Scholar 

  51. Leontidis E (2002) Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr Opin Colloid Interface Sci 7(1–2):81–91

    Article  CAS  Google Scholar 

  52. Parsons DF, Bostrom M, Lo Nostro P, Ninham BW (2011) Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size. Phys Chem Chem Phys 13(27):12352–12367

    Article  CAS  Google Scholar 

  53. Vacha R, Siu SWI, Petrov M, Bockmann RA, Barucha-Kraszewska J, Jurkiewicz P, Hof M, Berkowitz ML, Jungwirth P (2009) Effects of alkali cations and halide anions on the DOPC lipid membrane. J Phys Chem A 113(26):7235–7243

    Article  CAS  Google Scholar 

  54. Vacha R, Jurkiewicz P, Petrov M, Berkowitz ML, Bockmann RA, Barucha-Kraszewska J, Hof M, Jungwirth P (2010) Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes. J Phys Chem B 114(29):9504–9509

    Article  CAS  Google Scholar 

  55. Jurkiewicz P, Cwiklik L, Vojtiskova A, Jungwirth P, Hof M (2012) Structure, dynamics, and hydration of POPC/POPS bilayers suspended in NaCl, KCl, and CsCl solutions. Biochim Biophys Acta 1818(3):609–616

    Article  CAS  Google Scholar 

  56. Fruhwirth GO, Loidl A, Hermetter A (2007) Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta 1772(7):718–736

    Article  CAS  Google Scholar 

  57. Jurkiewicz P, Olżyńska A, Cwiklik L, Conte E, Jungwirth P, Megli FM, Hof M (2012) Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations. Biochim Biophys Acta-Biomembranes 1818(10):2388–2402, doi: 10.1016/j.bbamem.2012.05.020

  58. Beranova L, Cwiklik L, Jurkiewicz P, Jungwirth P, Hof M (2010) Oxidation changes physical properties of phospholipid bilayers: fluorescence spectroscopy and molecular simulations. Langmuir 26(9):6140–6144

    Article  CAS  Google Scholar 

  59. Sabatini K, Mattila JP, Megli FM, Kinnunen PKJ (2006) Characterization of two oxidatively modified phospholipids in mixed monolayers with DPPC. Biophys J 90(12):4488–4499

    Article  CAS  Google Scholar 

  60. Khandelia H, Mouritsen OG (2009) Lipid gymnastics: evidence of complete acyl chain reversal in oxidized phospholipids from molecular simulations. Biophys J 96(7):2734–2743

    Article  CAS  Google Scholar 

  61. Volinsky R, Cwiklik L, Jurkiewicz P, Hof M, Jungwirth P, Kinnunen PKJ (2011) Oxidized phosphatidylcholines facilitate phospholipid flip-flop in liposomes. Biophys J 101(6):1376–1384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Czech Science Foundation via grants 208/10/1090 (SP and AO) and EUROMEMBRANES project MEM/09/E006 (MH, PJ). Moreover, MH acknowledges the Praemium Academie Award (Academy of Sciences of the Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Jurkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pokorna, S., Olżyńska, A., Jurkiewicz, P., Hof, M. (2012). Hydration and Mobility in Lipid Bilayers Probed by Time-Dependent Fluorescence Shift. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_46

Download citation

Publish with us

Policies and ethics