Skip to main content
Log in

Solvent Relaxation in Phospholipid Bilayers: Principles and Recent Applications

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Although there exist a number of methods, such as NMR, X-ray, e.g., which explore the hydration of phospholipid bilayers, the solvent relaxation (SR) method has the advantage of simple instrumentation, easy data treatment and possibility of measuring fully hydrated samples. The main information gained from SR by the analysis of recorded “time-resolved emission spectra” (TRES) is micro-viscosity and micro-polarity of the dye microenvironment. Based on these parameters, one can draw conclusions about water structure in the bilayer. In this review, we focus on physical background of this method, on all the procedures that are needed in order to obtain relevant parameters, and on the requirements on the fluorescence dyes. Furthermore, a few recent applications (the effect of curvature, binding of antibacterial peptides and phase transition) illustrating the versatility of this method are mentioned. Moreover, limitations and potential problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. A. Rupley and G. Careri (1991). Protein hydration and function. Adv. Protein Chem. 41, 37–172.

    PubMed  CAS  Google Scholar 

  2. E. G. Finer and A. Darke (1974). Phospholipid hydration studied by deuteron magnetic-resonance spectroscopy. Chem. Phys. Lipids 12(1), 1–16.

    Article  PubMed  CAS  Google Scholar 

  3. T. Sparrman and P. O. Westlund (2003). An NMR line shape and relaxation analysis of heavy water powder spectra of the l-alpha, l-beta′, and P-beta′ phases in the DPPC/water system. Phys. Chem. Chem. Phys. 5(10), 2114–2121.

    Article  CAS  Google Scholar 

  4. P. O. Westlund (2000). Line shape analysis of NMR powder spectra of (H2O)-H-2 in lipid bilayer systems. J. Phys. Chem. B 104(25), 6059–6064.

    Article  CAS  Google Scholar 

  5. D. L. Bernik, D. Zubiri, E. Tymczyszyn, and E. A. Disalvo (2001). Polarity and packing at the carbonyl and phosphate regions of lipid bilayers. Langmuir 17(21), 6438–6442.

    Article  CAS  Google Scholar 

  6. A. Chattopadhyay (2003). Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem. Phys. Lipids 122(1–2), 3–17.

    Article  PubMed  CAS  Google Scholar 

  7. S. Mazeres, V. Schram, J. F. Tocanne, and A. Lopez (1996). 7-Nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: Differences in fluorescence behavior. Biophys. J. 71(1), 327–335.

    PubMed  CAS  Google Scholar 

  8. S. Tristram-Nagle and J. F. Nagle (2004). Lipid bilayers: Thermodynamics, structure, fluctuations, and interactions. Chem. Phys. Lipids 127(1), 3–14.

    Article  PubMed  CAS  Google Scholar 

  9. M. C. Rheinstadter, C. Ollinger, G. Fragneto, and T. Salditt (2004). Collective dynamics in phospholipid bilayers investigated by inelastic neutron scattering: Exploring the dynamics of biological membranes with neutrons. Physica B Condens. Matter 350(1–3), 136–139.

    Article  CAS  Google Scholar 

  10. P. Jedlovszky and M. Mezei (2001). Orientational order of the water molecules across a fully hydrated DMPC bilayer: A Monte Carlo simulation study. J. Phys. Chem. B 105(17), 3614–3623.

    Article  CAS  Google Scholar 

  11. F. Zhou and K. Schulten (1995). Molecular-dynamics study of a membrane water interface. J. Phys. Chem. 99(7), 2194–2207.

    Article  CAS  Google Scholar 

  12. I. Z. Zubrzycki, Y. Xu, M. Madrid, and P. Tang (2000). Molecular dynamics simulations of a fully hydrated dimyristoylphosphatidylcholine membrane in liquid-crystalline phase. J. Chem. Phys. 112(7), 3437–3441.

    Article  CAS  Google Scholar 

  13. J. F. Nagle and S. Tristram-Nagle (2000). Structure of lipid bilayers. Biochim. Biophys. Acta Rev. Biomembr. 1469(3), 159–195.

    CAS  Google Scholar 

  14. M. Langner and K. Kubica (1999). The electrostatics of lipid surfaces. Chem. Phys. Lipids 101(1), 3–35.

    Article  PubMed  CAS  Google Scholar 

  15. A. Blume, W. Hubner, and G. Messner (1988). Fourier-transform infrared-spectroscopy of C-13=O-labeled phospholipids. Hydrogen-bonding to carbonyl groups. Biochemistry 27(21), 8239–8249.

    Article  PubMed  CAS  Google Scholar 

  16. J. Grdadolnik, J. Kidric, and D. Hadzi (1991). Hydration of phosphatidylcholine reverse micelles and multilayers—An infrared spectroscopic study. Chem. Phys. Lipids 59(1), 57–68.

    Article  CAS  Google Scholar 

  17. H. Morgan, D. M. Taylor, and O. N. Oliveira (1988). Two-dimensional proton conduction at a membrane-surface—Influence of molecular packing and hydrogen-bonding. Chem. Phys. Lett. 150(3–4), 311–314.

    Article  CAS  Google Scholar 

  18. M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, and A. Kusumi (1997). Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: Location, geometry, and lipid–lipid bridging via hydrogen-bonded water. J. Phys. Chem. A 101(20), 3677–3691.

    Article  CAS  Google Scholar 

  19. A. Chattopadhyay and S. Mukherjee (1999). Red edge excitation shift of a deeply embedded membrane probe: Implications in water penetration in the bilayer. J. Phys. Chem. B 103(38), 8180–8185.

    Article  CAS  Google Scholar 

  20. E. Perochon, A. Lopez, and J. F. Tocanne (1992). Polarity of lipid bilayers—A fluorescence investigation. Biochemistry 31(33), 7672–7682.

    Article  PubMed  CAS  Google Scholar 

  21. V. Kurze, B. Steinbauer, T. Huber, and K. Beyer (2000). A H-2 NMR study of macroscopically aligned bilayer membranes containing interfacial hydroxyl residues. Biophys. J. 78(5), 2441–2451.

    PubMed  CAS  Google Scholar 

  22. S. J. Marrink and H. J. C. Berendsen (1994). Simulation of water transport through a lipid-membrane. J. Phys. Chem. 98(15), 4155–4168.

    Article  CAS  Google Scholar 

  23. S. J. Marrink, M. Berkowitz, and H. J. C. Berendsen (1993). Molecular-dynamics simulation of a membrane water interface—The ordering of water and its relation to the hydration force. Langmuir 9(11), 3122–3131.

    Article  CAS  Google Scholar 

  24. J. F. Nagle and M. C. Wiener (1988). Structure of fully hydrated bilayer dispersions. Biochim. Biophys. Acta 942(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  25. U. Kaatze, A. Dittrich, K. D. Gopel, and R. Pottel (1984). Dielectric studies on water in solutions of purified lecithin vesicles. Chem. Phys. Lipids 35(3), 279–290.

    Article  CAS  Google Scholar 

  26. A. P. Winiski, M. Eisenberg, M. Langner, and S. McLaughlin (1988). Fluorescence probes of electrostatic potential 1nm from membrane surface. Biochemistry 27(1), 386–392.

    Article  PubMed  Google Scholar 

  27. M. Langner, S. D. Cafiso, S. Marcelja, and S. McLaughlin (1990). The electrostatic properties of the phosphoinositides: Theoretical and experimental results. Biophys. J. 57(2), 335–349.

    Article  PubMed  CAS  Google Scholar 

  28. M. Langner and S. W. Hui (1993). Dithionite penetration through phospholipid bilayer as a measure of defects in lipid molecular packing. Chem. Phys. Lipids 65(1), 23–30.

    Article  PubMed  CAS  Google Scholar 

  29. M. R. Eftink (1992). in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy: Principles. Plenum Press, New York, pp. 53–120.

  30. B. W. Van der Meer, G. Coker, and S. Y. S. Chen (1994). Resonance Energy Transfer: Theory and Data. VCH Verlag, Weinheim.

  31. R. Hutterer, F. W. Schneider, and M. Hof (1997). Anisotropy and lifetime profiles for n-anthroyloxy fatty acids: A fluorescence method for the detection of bilayer interdigitation. Chem. Phys. Lipids 86(1), 51–64.

    Article  CAS  Google Scholar 

  32. M. Langner and S. W. Hui (1999). Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamellar-hexagonal transition of phosphatidylethanolamine bilayers. Biochim. Biophys. Acta 1415(2), 323–330.

    Article  PubMed  CAS  Google Scholar 

  33. K. Kubica, M. Langner, and J. Gabrielska (2003). The dependence of fluorescein-PE fluorescence intensity on lipid bilayer state. Evaluating the interaction between the probe and lipid molecules. Cell Mol. Biol. Lett. 8(4), 943–954.

    PubMed  CAS  Google Scholar 

  34. C. D. Stubbs and B. W. Williams (1992). in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy: Biochemical Applications, Vol. 3. Plenum Press, New York, pp. 231–271.

  35. C. Bernsdorff, A. Wolf, R. Winter, and E. Gratton (1997). Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid–cholesterol bilayers. Biophys. J. 72(3), 1264–1277.

    PubMed  CAS  Google Scholar 

  36. K. Brand, M. Hof, and F. W. Schneider (1991). Isotope effect in the time resolved fluorescence of anthracene in small unilamellar vesicles. Berichte Der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys. 95(11), 1511–1514.

    CAS  Google Scholar 

  37. G. Duportail and P. Lianos (1996). in M. Rosoff (Ed.), Vesicles. Marcell Dekker, New York, pp. 296–372.

  38. R. Hutterer, A. Haefner, F. W. Schneider, and M. Hof (1998). in J. Slavik (Ed.), Fluorescence Microscopy and Fluorescence Probes, Vol. 2. Plenum Press, New York, pp. 93–98.

  39. U. A. van der Heide, G. van Ginkel, and Y. K. Levine (1996). DPH is localized in two distinct populations in lipid vesicles. Chem. Phys. Lett. 253(1–2), 118–122.

    Article  CAS  Google Scholar 

  40. R. Hutterer, F. W. Schneider, W. T. Hermens, R. Wagenvoord, and M. Hof (1998). Binding of prothrombin and its fragment 1 to phospholipid membranes studied by the solvent relaxation technique. Biochim. Biophys. Acta 1414(1–2), 155–164.

    PubMed  CAS  Google Scholar 

  41. T. Sheynis, J. Sykora, A. Benda, S. Kolusheva, M. Hof, and R. Jelinek (2003). Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. Eur. J. Biochem. 270(22), 4478–4487.

    Article  PubMed  CAS  Google Scholar 

  42. J. H. Easter, R. P. Detoma, and L. Brand (1976). Nanosecond time-resolved emission-spectroscopy of a fluorescence probe adsorbed to l-alpha-egg lecithin vesicles. Biophys. J. 16(6), 571–583.

    PubMed  CAS  Google Scholar 

  43. P. F. Barbara and W. Jarzeba (1990). in D. H. Volman, G. S. Hammond, and K. Gollnick (Eds.), Advances in Photochemistry, Vol. 15. Willey, New York, p. 1.

  44. M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli (1995). Subpicosecond measurements of polar solvation dynamics—Coumarin-153 revisited. J. Phys. Chem. 99(48), 17311–17337.

    Article  CAS  Google Scholar 

  45. B. Bagchi, D. W. Oxtoby, and G. R. Fleming (1984). Theory of the time development of the Stokes shift in polar media. Chem. Phys. 86(3), 257–267.

    Article  CAS  Google Scholar 

  46. I. Rips, J. Klafter, and J. Jortner (1988). Solvation dynamics in polar liquids. J. Chem. Phys. 89(7), 4288–4299.

    Article  CAS  Google Scholar 

  47. I. Rips, J. Klafter, and J. Jortner (1988). Dynamics of ionic solvation. J. Chem. Phys. 88(5), 3246–3252.

    Article  CAS  Google Scholar 

  48. H. L. Friedman, F. O. Raineri, F. Hirata, and B. C. Perng (1995). Surrogate Hamiltonian description of solvation dynamics—Site number density and polarization charge-density formulations. J. Stat. Phys. 78(1–2), 239–266.

    Article  Google Scholar 

  49. F. O. Raineri, B. C. Perng, and H. L. Friedman (1994). Surrogate Hamiltonian description of solvation dynamics—Resolution of global responses into spatial profiles. Chem. Phys. 183(2–3), 187–205.

    Article  CAS  Google Scholar 

  50. N. G. Bakshiev (1964). Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions. Opt. Spectrosk. 16(5), 821–832.

    Google Scholar 

  51. Y. T. Mazurenko and N. G. Bakshiev (1970). Effect of orientation dipole relaxation on spectral and polarization characteristics of the luminescence of solutions. Opt. Spectosc. 28, 490–494.

    Google Scholar 

  52. W. Liptay (1974). in E. C. Lim (Ed.), Dipole Moments and Polarizabilities of Molecules in Excited States, Vol. 1. Academic Press, New York, pp. 129–229.

  53. R. M. Stratt and M. Maroncelli (1996). Nonreactive dynamics in solution: The emerging molecular view of solvation dynamics and vibrational relaxation. J. Phys. Chem. 100(31), 12981–12996.

    Article  CAS  Google Scholar 

  54. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic/Plenum Press, New York.

  55. I. Gonzalo and T. Montoro (1985). Interpretation of the fluorescence decay of 1-methylindole in polar-solvents by reorientational effects. J. Phys. Chem. 89(9), 1608–1612.

    Article  CAS  Google Scholar 

  56. S. Arzhantsev, N. Ito, M. Heitz, and M. Maroncelli (2003). Solvation dynamics of coumarin 153 in several classes of ionic liquids: Cation dependence of the ultrafast component. Chem. Phys. Lett. 381(3–4), 278–286.

    Article  CAS  Google Scholar 

  57. J. A. Ingram, R. S. Moog, N. Ito, R. Biswas, and M. Maroncelli (2003). Solute rotation and solvation dynamics in a room-temperature ionic liquid. J. Phys. Chem. B 107(24), 5926–5932.

    Article  CAS  Google Scholar 

  58. N. Ito, S. Arzhantsev, M. Heitz, and M. Maroncelli (2004). Solvation dynamics and rotation of coumarin 153 in alkylphosphonium ionic liquids. J. Phys. Chem. B 108(18), 5771–5777.

    Article  CAS  Google Scholar 

  59. A. A. Istratov and O. F. Vyvenko (1999). Exponential analysis in physical phenomena. Rev. Sci. Instrum. 70(2), 1233–1257.

    Article  CAS  Google Scholar 

  60. V. Nagarajan, A. M. Brearley, T. J. Kang, and P. F. Barbara (1987). Time-resolved spectroscopic measurements on microscopic solvation dynamics. J. Chem. Phys. 86(6), 3183–3196.

    Article  CAS  Google Scholar 

  61. M. Hof (1999). in W. Rettig, B. Strehmel, and S. Schrader (Eds.), Applied Fluorescence in Chemistry, Biology, and Medicine. Springer Verlag, Berlin, pp. 439–456.

  62. R. Hutterer, F. W. Schneider, H. Sprinz, and M. Hof (1996). Binding and relaxation behaviour of Prodan and Patman in phospholipid vesicles: A fluorescence and H-1 NMR study. Biophys. Chem. 61(2–3), 151–160.

    Article  PubMed  CAS  Google Scholar 

  63. R. Hutterer, F. W. Schneider, H. Lanig, and M. Hof (1997). Solvent relaxation behaviour of n-anthroyloxy fatty acids in PC-vesicles and paraffin oil: A time-resolved emission spectra study. Biochim. Biophys. Acta Biomembr. 1323(2), 195–207.

    Article  CAS  Google Scholar 

  64. M. Hof, J. Schleicher, and F. W. Schneider (1989). Time resolved fluorescence in doped aerogels and organosilicate glasses. Berichte Der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys. 93(11), 1377

    CAS  Google Scholar 

  65. E. L. Wehry and L. B. Rogers (1966). in E. Hercules (Ed.), Fluorescence and Phosphorescence Analysis. Interscience, New York, pp. 81–149.

  66. D. B. Siano and D. E. Metzler (1969). Band shapes of electronic spectra of complex molecules. J. Chem. Phys. 51(5), 1856–1859.

    Article  CAS  Google Scholar 

  67. M. Maroncelli and G. R. Fleming (1987). Picosecond solvation dynamics of coumarin-153—The importance of molecular aspects of solvation. J. Chem. Phys. 86(11), 6221–6239.

    Article  CAS  Google Scholar 

  68. E. W. Castner, M. Maroncelli, and G. R. Fleming (1987). Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents. J. Chem. Phys. 86(3), 1090–1097.

    Article  CAS  Google Scholar 

  69. M. Yang and R. Richert (2001). Observation of heterogeneity in the nanosecond dynamics of a liquid. J. Chem. Phys. 115(6), 2676–2680.

    Article  CAS  Google Scholar 

  70. J. Sýkora, V. Mudogo, R. Hutterer, M. Nepraš, J. Vaněrka, P. Kapusta, V. Fidler, and M. Hof (2002). ABA-C-15: A new dye for probing solvent relaxation in phospholipid bilayers. Langmuir 18(24), 9276–9282.

    Article  CAS  Google Scholar 

  71. R. Richert (2001). Spectral diffusion in liquids with fluctuating solvent responses: Dynamical heterogeneity and rate exchange. J. Chem. Phys. 115(3), 1429–1434.

    Article  CAS  Google Scholar 

  72. A. S. Klymchenko, G. Duportail, A. P. Demchenko, and Y. Mely (2004). Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys. J. 86(5), 2929–2941.

    Article  PubMed  CAS  Google Scholar 

  73. R. Hutterer and M. Hof (2002). Probing ethanol-induced phospholipid phase transitions by the polarity sensitive fluorescence probes Prodan and Patman. Zeitschrift Fur Physikalische Chemie-Int. J. Res. Phys. Chem. Chem. Phys. 216, 333–346.

    CAS  Google Scholar 

  74. P. L. Chong, S. Capes, and P. T. T. Wong (1989). Effects of hydrostatic-pressure on the location of Prodan in lipid bilayers—A Ft-Ir study. Biochemistry 28(21), 8358–8363.

    Article  PubMed  CAS  Google Scholar 

  75. R. F. Loring, Y. J. Yan, and S. Mukamel (1987). Time-resolved fluorescence and hole-burning line-shapes of solvated molecules—Longitudinal dielectric-relaxation and vibrational dynamics. J. Chem. Phys. 87(10), 5840–5857.

    Article  CAS  Google Scholar 

  76. R. S. Fee and M. Maroncelli (1994). Estimating the time-zero spectrum in time-resolved emission measurements of solvation dynamics. Chem. Phys. 183(2–3), 235–247.

    Article  CAS  Google Scholar 

  77. J. Sýkora, P. Kapusta, V. Fidler, and M. Hof (2002). On what time scale does solvent relaxation in phospholipid bilayers happen? Langmuir 18(3), 571–574.

    Article  CAS  Google Scholar 

  78. R. S. Fee, J. A. Milsom, and M. Maroncelli (1991). Inhomogeneous decay kinetics and apparent solvent relaxation at low-temperatures. J. Phys. Chem. 95(13), 5170–5181.

    Article  CAS  Google Scholar 

  79. W. Rettig (1986). Charge separation in excited-states of decoupled systems—TICT compounds and implications regarding the development of new laser-dyes and the primary processes of vision and photosynthesis. Angewandte Chemie-Int. Ed. Eng. 25(11), 971–988.

    Article  Google Scholar 

  80. D. Chakrabarty, P. Hazra, A. Chakraborty, and N. Sarkar (2003). Solvation dynamics of coumarin 480 in bile salt–cetyltrimethylammonium bromide (CTAB) and bile salt–Tween 80 mixed micelles. J. Phys. Chem. B 107(49), 13643–13648.

    Article  CAS  Google Scholar 

  81. R. Hutterer, F. W. Schneider, and M. Hof (1997). Time-resolved emission spectra and anisotropy profiles for symmetric diacyl- and dietherphosphatidylcholines. J. Fluorescence 7, 27–33.

    Article  CAS  Google Scholar 

  82. A. Chattopadhyay and E. London, (1987). Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26(1), 39–45.

    Article  PubMed  CAS  Google Scholar 

  83. J. Sýkora, P. Jurkiewicz, R. M. Epand, R. Kraayenhof, M. Langner, and M. Hof (2005). Influence of the curvature on the water structure in the headgroup region of phospholipid bilayer studied by the solvent relaxation technique. Chem. Phys. Lipids 135(2), 213–221.

    Article  PubMed  CAS  Google Scholar 

  84. R. Hutterer, A. Parusel, and M. Hof (1998). Solvent relaxation of Prodan and Patman: A useful tool for the determination of polarity and rigidity changes in membranes. J. Fluorescence 8(4), 389–393.

    Article  CAS  Google Scholar 

  85. R. Hutterer and M. Hof (1996). Binding of prothrombin fragment 1 to phosphatidylserine containing vesicles: A solvent relaxation study. in J. Slavik (Ed.), Fluorescence Microscopy and Fluorescence Probes, Vol. 1. Plenum Press, New York, pp. 232–237.

    Google Scholar 

  86. M. Hof and P. Lianos (1997). Structural studies of thin AOT films by using the polarity fluorescent probe coumarin-153. Langmuir 13(2), 290–294.

    Article  CAS  Google Scholar 

  87. H.-J. Egelhaaf, B. Lehr, M. Hof, A. Häfner, H. Fritz, F. W. Schneider, E. Bayer, and D. Oelkrug (2000). Solvation and solvent relaxation in swellable copolymers as studied by time-resolved fluorescence spectroscopy. J. Fluorescence 10(4), 383–392.

    Article  CAS  Google Scholar 

  88. H. Bürsing, D. Ouw, S. Kundu, and P. Vöhringer (2001). Probing solvation dynamics in liquid water and at phospholipid/water interfaces with femtosecond photon-echo spectroscopies. Phys. Chem. Chem. Phys. 3(12), 2378–2387.

    Article  CAS  Google Scholar 

  89. P. Dutta, P. Sen, S. Mukherjee, and K. Bhattacharyya (2003). Solvation dynamics in DMPC vesicle in the presence of a protein. Chem. Phys. Lett. 382(3–4), 426–433.

    Article  CAS  Google Scholar 

  90. J. Zimmerberg and S. McLaughlin (2004). Membrane curvature: How BAR domains bend bilayers. Curr. Biol. 14(6), R250–R252.

    Article  PubMed  CAS  Google Scholar 

  91. W. B. Huttner and J. Zimmerberg (2001). Implications of lipid microdomains for membrane curvature, budding and fission—Commentary. Curr. Opin. Cell Biol. 13(4), 478–484.

    Article  PubMed  CAS  Google Scholar 

  92. M. Hof, R. Hutterer, N. Perez, H. Ruf, and F. W. Schneider (1994). Influence of vesicle curvature on fluorescence relaxation kinetics of fluorophores. Biophys. Chem. 52(2), 165–172.

    Article  PubMed  CAS  Google Scholar 

  93. K. Matsuzaki (1999). Why and how are peptide lipid interactions utilized for self-defense? Biochim. Biophys. Acta 1462(1–2), 1–10.

    PubMed  CAS  Google Scholar 

  94. D. Allende, A. Vidal, S. A. Simon, and T. J. McIntosh (2003). Bilayer interfacial properties modulate the binding of amphipathic peptides. Chem. Phys. Lipids 122(1–2), 65–76.

    Article  PubMed  CAS  Google Scholar 

  95. J. A. Killian, I. Salemink, M. P. R. dePlanque, G. Lindblom, R. E. Koeppe, and D. V. Greathouse (1996). Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: Importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry 35(3), 1037–1045.

    Article  PubMed  CAS  Google Scholar 

  96. I. Z. Zubrzycki, Y. Xu, M. Madrid, and P. Tang (2000). Molecular dynamics simulations of a fully hydrated dimyristoylphosphatidylcholine membrane in liquid-crystaline phase. J. Chem. Phys. 112(7), 3437–3441.

    Article  CAS  Google Scholar 

  97. D. Michael and I. Benjamin (2001). Molecular dynamics computer simulations of solvation dynamics at liquid/liquid interfaces. J. Chem. Phys. 114(6), 2817–2824.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support by the Czech Academy of Sciences (M.H., A.O., J.S, and P.J. via A400400503) and the Grant Agency of the Czech Republic (J.S. via 203/05/2308) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurkiewicz, P., Sýkora, J., Ol żyńska, A. et al. Solvent Relaxation in Phospholipid Bilayers: Principles and Recent Applications. J Fluoresc 15, 883–894 (2005). https://doi.org/10.1007/s10895-005-0013-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0013-4

KEY WORDS:

Navigation