Skip to main content

Esophageal and Gastrointestinal Microcirculation: Essential for Mucosal Protection, a Target for Injury, and a Critical Component of Injury and Ulcer Healing

  • Conference paper
Organ Microcirculation

Summary

Blood flow through the network of mucosal microvessels in the gastrointestinal tract is essential for delivery of oxygen and nutrients to all mucosal constituents. The endothelial cells lining the microvessels, although protected by prostaglandins, are major targets for injury by various noxious factors, such as ethanol, nonsteroidal anti-inflammatory drugs (NSAIDs), ischemia-reperfusion, and free radicals. Endothelial injury results in formation of thrombi, microvascular stasis, and hypoxia, leading to tissue necrosis in the form of erosions or ulcers. Quantitative histologic, Transmission (TEM) and scanning electron microscopy (SEM) studies show that acute mucosal injury such as erosion triggers angiogenesis in the mucosal microvessels bordering necrosis: endothelial sprouting, formation of endothelial tubes ultimately leading to restoration of microvessels in regenerating tissue. The major molecular trigger for the initiation of angiogenesis in injured esophageal and gastric mucosa is accumulation of hypoxia inducible factor-1α (HIF-1α), which activates the genes encoding vascular endothelial growth factor (VEGF), its receptor, and angiopoietins that regulate angiogenesis. During healing of esophageal or gastric ulcers, granulation tissue, consisting of fibroblasts and proliferating endothelial cells forming microvessels, develops at the ulcer base. The newly formed microvessels, supported by fibroblasts and smooth muscle cells, sprout into the ulcerated area and restore the microvasculature in the ulcer scar. The molecular mechanisms stimulating angiogenesis in granulation tissue include activation of HIF-1α, egr-1, and genes encoding basic fibroblast growth factor, VEGF, angiopoietin-1, angiopoietin- 2, their receptors, and cyclooxygenase-2. The latter co-localizes with upregulated VEGF in esophageal and gastric ulcers. The scars of healed ulcers demonstrate prominent microvascular abnormalities detected by cast/SEM and vascular permeability studies. NSAIDs inhibit angiogenesis by interfering with MAP/Erk2 kinase, actin cytoskeleton, and D1 cyclin. Such actions are likely responsible for NSAID interference with ulcer healing. Our studies demonstrated that gene therapy with a single local injection of VEGF and angiopoietin-1 cDNAs stimulates angiogenesis, promotes restoration of microvascular network, and accelerates healing of experimental gastric and esophageal ulcers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guth PH, Leung FW (1987) Physiology of the gastric circulation. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 1031–1054

    Google Scholar 

  2. Crissinger KD, Granger N (1995) Gastrointestinal blood flow. In: Yamada T (ed) Textbook of gastroenterology, 2nd edn. Lippincott, Philadelphia, pp 518–545

    Google Scholar 

  3. Tarnawski A (1998) Cellular and molecular mechanisms of mucosal defense and repair. In: Bioregulation and its disorders in gastrointestinal tract. Blackwell Science, Tokyo, pp 3–17

    Google Scholar 

  4. Tarnawski A, Jones MK, Baatar D, et al. (2002) Role of angiogenesis and angiogenic growth factor in mucosal repair and ulcer healing. In: Cho CH, Wang JY, Wang JH (eds) Karger gastrointestinal mucosal repair and experimental therapeutics, vol. 25. pp 101–116

    Google Scholar 

  5. Kawano S, Tsuji S (2000) Role of mucosal blood flow: a conceptual review in gastric mucosal injury and protection. J Gastroenterol Hepatol 15:D1–D6

    Article  PubMed  Google Scholar 

  6. Ichikawa Y, Tarnawski A, Sarfeh IJ, et al (1994) Distorted microangio-architecture and impaired angiogenesis in gastric mucosa of portal hypertensive rat. Gastroenterology, 106:706–708

    Google Scholar 

  7. Holzer P (1991) Sensory nerves and neuropeptides in gastroenterology. From basic science to clinical perspectives. Adv Exp Med Biol 298:3–17

    CAS  PubMed  Google Scholar 

  8. Tarnawski A, Sarfeh IJ, Lu S-Y, et al (1993) Quality of ulcer healing: evidence for impaired restoration of sensory CGRP nerves in the scar of experimental gastric ulcer. Eur J Gastroenterol Hepatol 5(3):S81–S85

    Google Scholar 

  9. Peskar BM, Plate S, Stroff T (1997) Gastroprotective effects of gut peptides: Role of afferent neurons, calcitonin gene-related peptide and nitric oxide. In: Cheli R, Iaquinto G, Szabo S (eds) Gastroduodenal mucosal damage: problems of protection and healing. Medserve, Milan, pp 70–83

    Google Scholar 

  10. Arai K, Ohno T, Saeki T, et al (2003) Endogenous prostaglandin 12 regulates the neural emergency system through release of calcitonin gene related peptide. Gut 52(9): 1242–1249

    Article  CAS  PubMed  Google Scholar 

  11. Tarnawski A, Stachura J, Gergely H, et al (1988) Microvascular endothelium: A major target for alcohol injury of the human gastric mucosa: histochemical and ultrastructural study. J Clin Gastroenterol 10(suppl 1):S53

    PubMed  Google Scholar 

  12. Tarnawski A, Stachura J, Hollander D, et al (1988) Cellular aspects of alcohol-induced injury and prostaglandin protection of the human gastric mucosa. J Clin Gastroenterol 10(suppl 1):S35–S45

    PubMed  Google Scholar 

  13. Yoshida M, Wakabayashi G, Ishikawa H, et al (2002) Arteriovenous shunting blood flow is intravitally observed in the stomach after thermal injury in rats. Keio J Med 51(4):193–200

    PubMed  Google Scholar 

  14. Jones MK, Itani RM, Wang H, et al (1999) Activation of VEGF and Ras genes in gastric mucosa during angiogenic response to ethanol injury. Am J Physiol 276:G1345–G1355

    CAS  PubMed  Google Scholar 

  15. Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    Article  CAS  PubMed  Google Scholar 

  16. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–693

    Article  CAS  PubMed  Google Scholar 

  17. Tarnawski A, Hollander D, Stachura J, et al (1991) Role of angiogenesis in healing of experimental gastric ulcer. In: Halter F, Garnet A, Tytat GNJ (eds) Mechanisms of peptic ulcer healing. Kluwer, Dordrecht, pp 165–171

    Google Scholar 

  18. Tarnawski AS, Jones MK (2003) Inhibition of angiogenesis by NSAIDs: molecular mechanisms and clinical implications. J Mol Med 81:627–636

    Article  CAS  PubMed  Google Scholar 

  19. Tarnawski A, Hollander D, Stachura J, et al (1999) Vascular and microvascular changes—key factors in the development of acetic acid-induced gastric ulcers in rats. J Clin Gastroenterol 22(suppl 1):S148–S157

    Google Scholar 

  20. Ferrara N, Gerber H-P, LeCourter J (2003) The biology of VEGF and its receptor. Nat Med 9:669–676

    CAS  PubMed  Google Scholar 

  21. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  PubMed  Google Scholar 

  22. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–673

    CAS  PubMed  Google Scholar 

  23. Levy AP, Levy NS, Goldberg MA (1996) Post-transcriptional regulation of vascular endothelial cell growth factor by hypoxia. J Biol Chem 271:2746–2753

    CAS  PubMed  Google Scholar 

  24. Gerber HJP, Condorelli F, Park J, Ferrara N (1997) Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes: Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272:23659–23667

    CAS  PubMed  Google Scholar 

  25. Kelly BD, Hackett SF, Hirota K, et al (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor-1. Circ Res 93(11):1074–1081

    Article  CAS  PubMed  Google Scholar 

  26. Yamakawa M, Liu LX, Date T, et al (2003) Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93(7):664–673

    Article  CAS  PubMed  Google Scholar 

  27. Levy NS, Chung S, Furneaux H, et al (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 13; 273(11):6417–6423

    CAS  PubMed  Google Scholar 

  28. Baatar D, Jones MK, Tasugawa K et al (2002) Esophageal ulceration triggers expression of hypoxia-inducible factor-1α and activates vascular endothelial growth factor gene. Am J Pathol 161:1449–1457

    CAS  PubMed  Google Scholar 

  29. Davis S, Aldrich TH, Jones PF, et al (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  CAS  PubMed  Google Scholar 

  30. Maisonpierre PC, Suri C, Jones PF, et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  PubMed  Google Scholar 

  31. Iivanainen E, Nelimarkka L, Elenius V, et al (2003) Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGF-like growth factor. FASEB J 17(12):1609–1621

    Article  CAS  PubMed  Google Scholar 

  32. Tarnawski A, Stachura J, Gregeley H, et al (1990) Gastric microvascular endothelium: a major target for aspirin-induced injury and arachidonic acid protection. An ultrastructural analysis in the rat. Eur J Clin Invest 20(4):432–440

    CAS  PubMed  Google Scholar 

  33. Tarnawski A, Stachura J, Douglass TG, et al (1991) Indomethacin impairs quality of experimental gastric ulcer healing: A quality histologic and ultrastructural analysis. In: Garner A, O’Brien PE (eds) Mechanisms of injury, protection and repair of the upper gastrointestinal tract. Wiley, Chichester, pp 521–531

    Google Scholar 

  34. Jones MK, Wang H, Levin E, et al (1999) Inhibition of angiogenesis by NSAIDs. Insight into the mechanisms and implications for cancer growth and ulcer healing. Nat Med 5:1418–1423

    CAS  PubMed  Google Scholar 

  35. Jones MK, Kawanaka H, Baatar D, et al (2001) Gene therapy for gastric ulcers. Single local injection of VEGF and angiopoietin-1 DNAs dramatically accelerates gastric ulcers healing and improves quality of scar. Gastroenterology 121:1040–1047

    Article  CAS  PubMed  Google Scholar 

  36. Folkman J, Szabo S, Stovroff M, et al (1991) Duodenal ulcer. Discovery of a new mechanisms and development of angiogenic therapy that accelerates healing. Ann Surg 214:414–427

    CAS  PubMed  Google Scholar 

  37. Szabo S, Folkman J, Vincze A, et al (1997) Modulation of vascular factors by VEGF/VPF is sufficient for chronic ulcer healing and acute gastroprotection (abstract). Gastroenterology 122:A303

    Google Scholar 

  38. Tarnawski A, Chai J, Chiou S-K, et al (2003) Rebamipide—a novel ulcer healing drug—strongly stimulates angiogenesis by activating genes inducing angiogenic growth factors, and Cox2. A key to its ulcer healing action? In: Pasteur Institute Euroconference Paris, Proceedings A-38

    Google Scholar 

  39. Tarnawski AS, Chai J, Pai R, et al (2004) Rebamipide activates genes encoding angiogenic growth factors and Cox2 and stimulates angiogenesis: a key to its ulcer healing action? Dig Dis Sci 49(2):202–209

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida M, Wakabayashi G, Ishikawa H, et al (2002) Arteriovenous shunting blood flow is intravitally observed in the stomach after thermal injury in rats. Keio J Med 51(4):193–200

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this paper

Cite this paper

Tarnawski, A.S., Chai, J., Jones, M.K. (2005). Esophageal and Gastrointestinal Microcirculation: Essential for Mucosal Protection, a Target for Injury, and a Critical Component of Injury and Ulcer Healing. In: Ishii, H., Suematsu, M., Tanishita, K., Suzuki, H. (eds) Organ Microcirculation. Keio University International Symposia for Life Sciences and Medicine, vol 13. Springer, Tokyo. https://doi.org/10.1007/4-431-27174-0_7

Download citation

  • DOI: https://doi.org/10.1007/4-431-27174-0_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-22135-7

  • Online ISBN: 978-4-431-27174-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics