Skip to main content

Ecotoxicology of Heavy Metal(loid)-Enriched Particulate Matter: Foliar Accumulation by Plants and Health Impacts

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 253

Abstract

Atmospheric contamination by heavy metal-enriched particulate matter (metal-PM) is highly topical nowadays because of its high persistence and toxic nature. Metal-PMs are emitted to the atmosphere by various natural and anthropogenic activities, the latter being the major source. After being released into the atmosphere, metal-PM can travel over a long distance and can deposit on the buildings, water, soil, and plant canopy. In this way, these metal-PMs can contaminate different parts of the ecosystem. In addition, metal-PMs can be directly inhaled by humans and induce several health effects. Therefore, it is of great importance to understand the fate and behavior of these metal-PMs in the environment. In this review, we highlighted the atmospheric contamination by metal-PMs, possible sources, speciation, transport over a long distance, and deposition on soil, plants, and buildings. This review also describes the foliar deposition and uptake of metal-PMs by plants. Moreover, the inhalation of these metal-PMs by humans and the associated health risks have been critically discussed. Finally, the article proposed some key management strategies and future perspectives along with the summary of the entire review. The abovementioned facts about the biogeochemical behavior of metal-PMs in the ecosystem have been supported with well-summarized tables (total 14) and figures (4), which make this review article highly informative and useful for researchers, scientists, students, policymakers, and the organizations involved in development and management. It is proposed that management strategies should be developed and adapted to cope with atmospheric release and contamination of metal-PM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATSDR:

Agency for Toxic Substances and Disease Registry

EDI:

Estimated daily intake

EPA:

Environmental Protection Agency

ESEM:

Environmental scanning electron microscopy

GIS:

Geographic information system

GPS:

Global positioning system

GSH:

Glutathione

HI:

Hazard index

HQ:

Hazard quotient

ILTCR:

Lifetime cancer risk

MDI:

Maximum daily intake

Metal-PM:

Heavy metal-enriched particulate matter

PN:

Particulate matter

ROS:

Reactive oxygen species

SH:

Thiol

THQ:

Total hazard quotient

USEPA:

United States Environmental Protection Agency

WHO:

World Health Organization

XRD:

X-ray diffraction

References

  • Aas W, Breivik K (2005) Heavy metals and POP measurements, 2003. Norwegian Institute for Air Research (EMEP/CCC-Report 9/2005), Kjeller

    Google Scholar 

  • Aas W, Alleman LY, Bieber E, Gladtke D, Houdret J-L, Karlsson V, Monies C (2009) Comparison of methods for measuring atmospheric deposition of arsenic, cadmium, nickel and lead. J Environ Monit 11:1276–1283

    CAS  Google Scholar 

  • Acton QA (2012) Heavy metals-advances in research and application: 2012 edition. Scholarly Editions

    Google Scholar 

  • Adamiec E, Jarosz-Krzemińska E, Wieszała R (2016) Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ Monit Assess 188:369. https://doi.org/10.1007/s10661-016-5377-1

    Article  CAS  Google Scholar 

  • Ahmed F, Ishiga H (2006) Trace metal concentration in street dusts of Dhaka city, Bangladesh

    Google Scholar 

  • Alghamdi MA (2016) Characteristics and risk assessment of heavy metals in Airborne PM 10 from a Residential Area of Northern Jeddah City, Saudi Arabia. Pol J Environ Stud 25(3):939–949

    CAS  Google Scholar 

  • Al-Khlaifat AL, Al-Khashman OA (2007) Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves. Atmos Environ 41:8891–8897

    CAS  Google Scholar 

  • Alvarez FF, Rodrıguez MT, Espinosa AF, Dabán AG (2004) Physical speciation of arsenic, mercury, lead, cadmium and nickel in inhalable atmospheric particles. Anal Chim Acta 524:33–40

    Google Scholar 

  • Amodio M, Catino S, Dambruoso P, De Gennaro G, Di Gilio A, Giungato P, Laiola E, Marzocca A, Mazzone A, Sardaro A (2014) Atmospheric deposition: sampling procedures, analytical methods, and main recent findings from the scientific literature. Adv Meteorol 2014:161730

    Google Scholar 

  • Anake WU, Ana GR, Williams AB, Fred-Ahmadu OH, Benson NU (2017) Chemical speciation and health risk assessment of fine particulate bound trace metals emitted from Ota Industrial Estate, Nigeria, IOP conference series: earth and environmental science, vol 68. IOP Publishing, Bristol, p 012005

    Google Scholar 

  • Antoniadis V, Shaheen S, Levizou E, Shahid M, Niazi N, Vithanage M, Ok Y, Bolan N, Rinklebe J (2019) A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: are they protective concerning health risk assessment? – a review. Environ Int 127:819–847

    CAS  Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradère P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192

    CAS  Google Scholar 

  • Arslan B, Djamgoz MB, Akün E (2016) ARSENIC: a review on exposure pathways, accumulation, mobility and transmission into the human food chain. Rev Environ Contam Toxicol 243:27–51. Springer

    Google Scholar 

  • ATSDR (2002) Agency for Toxic Substances and Disease Registry. Toxicological profile for copper. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=206&tid=37

  • Ayrault S, Senhou A, Moskura M, Gaudry A (2010) Atmospheric trace element concentrations in total suspended particles near Paris, France. Atmos Environ 44:3700–3707

    CAS  Google Scholar 

  • Azimi S, Ludwig A, Thévenot DR, Colin J-L (2003) Trace metal determination in total atmospheric deposition in rural and urban areas. Sci Total Environ 308:247–256

    CAS  Google Scholar 

  • Badaloni C, Cesaroni G, Cerza F, Davoli M, Brunekreef B, Forastiere F (2017) Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study. Environ Int 109:146–154

    CAS  Google Scholar 

  • Balestrini R, Galli L, Tagliaferri A, Tartari G (1998) Study on throughfall deposition in two north Italian forest sites (Valtellina, Lombardy). Chemosphere 36:1095–1100

    Google Scholar 

  • Batonneau Y, Bremard C, Gengembre L, Laureyns J, Le Maguer A, Le Maguer D, Perdrix E, Sobanska S (2004) Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters. Environ Sci Technol 38:5281–5289

    CAS  Google Scholar 

  • Baulig A, Poirault J-J, Ausset P, Schins R, Shi T, Baralle D, Dorlhene P, Meyer M, Lefevre R, Baeza-Squiban A (2004) Physicochemical characteristics and biological activities of seasonal atmospheric particulate matter sampling in two locations of Paris. Environ Sci Technol 38:5985–5992

    CAS  Google Scholar 

  • Begum BA, Hopke PK, Markwitz A (2013) Air pollution by fine particulate matter in Bangladesh. Atmos Pollut Res 4:75–86

    CAS  Google Scholar 

  • Benhamou N (1996) Elicitor-induced plant defence pathways. Trends Plant Sci 1:233–240

    Google Scholar 

  • Bi C, Zhou Y, Chen Z, Jia J, Bao X (2018) Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci Total Environ 619:1349–1357

    Google Scholar 

  • Bilos C, Colombo J, Skorupka C, Presa MR (2001) Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ Pollut 111:149–158

    CAS  Google Scholar 

  • Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Günther D, Limbach LK (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44:8718–8723

    CAS  Google Scholar 

  • Bondada BR, Tu S, Ma LQ (2004) Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.). Sci Total Environ 332:61–70

    CAS  Google Scholar 

  • Bottalico F, Chirici G, Giannetti F, De Marco A, Nocentini S, Paoletti E, Salbitano F, Sanesi G, Serenelli C, Travaglini D (2016) Air pollution removal by Green infrastructures and Urban Forests in the City of Florence. Agric Agr Sci Procedia 8:243–251. https://doi.org/10.1016/j.aaspro.2016.02.099

    Article  Google Scholar 

  • Brauer M, Freedman G, Frostad J, Van Donkelaar A, Martin RV, Dentener F, Dingenen R v, Estep K, Amini H, Apte JS (2015) Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol 50:79–88

    Google Scholar 

  • Briki M, Zhu Y, Gao Y, Shao M, Ding H, Ji H (2017) Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China. Environ Monit Assess 189:458

    Google Scholar 

  • Bytnerowicz A, Omasa K, Paoletti E (2007) Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environ Pollut 147:438–445

    CAS  Google Scholar 

  • Catrambone M, Canepari S, Perrino C (2013) Determination of Cr (III), Cr (VI) and total chromium in atmospheric aerosol samples. E3S Web of conferences, vol 1. EDP Sciences

    Google Scholar 

  • Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradere P, Guiresse M (2008a) Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 144:287–298. https://doi.org/10.1016/j.geoderma.2007.11.023

    Article  CAS  Google Scholar 

  • Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradère P, Guiresse M (2008b) Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 144:287–298

    CAS  Google Scholar 

  • Celik A, Kartal A, Akdoğan A, Kaska Y (2005) Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L. Environ Int 31:105–112

    CAS  Google Scholar 

  • Chan NW, Mohamed S, Tan ML (2016) Air pollution. Sustainable urban development. Water Watch Penang and Yokohama City University, Yokohama, pp 226–234

    Google Scholar 

  • Chang P, Xu G (2017) A review of the health effects and exposure-responsible relationship of diesel particulate matter for underground mines. Int J Min Sci Technol 27:831–838

    Google Scholar 

  • Chen X, Pei T, Zhou Z, Teng M, He L, Luo M, Liu X (2015) Efficiency differences of roadside greenbelts with three configurations in removing coarse particles (PM10): a street scale investigation in Wuhan, China. Urban For Urban Green 14:354–360. https://doi.org/10.1016/j.ufug.2015.02.013

    Article  Google Scholar 

  • Cheng S, Chen D, Li J, Wang H, Guo X (2007) The assessment of emission-source contributions to air quality by using a coupled MM5-ARPS-CMAQ modeling system: a case study in the Beijing metropolitan region, China. Environ Model Softw 22:1601–1616

    Google Scholar 

  • Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, Eiguren-Fernandez A, Froines JR (2005) Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res 99:40–47

    CAS  Google Scholar 

  • Chuang H-C, Su T-Y, Chuang K-J, Hsiao T-C, Lin H-L, Hsu Y-T, Pan C-H, Lee K-Y, Ho S-C, Lai C-H (2018) Pulmonary exposure to metal fume particulate matter cause sleep disturbances in shipyard welders. Environ Pollut 232:523–532

    CAS  Google Scholar 

  • Clemente R, Escolar Á, Bernal MP (2006) Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresour Technol 97:1894–1901

    CAS  Google Scholar 

  • Colle C, Madoz-Escande C, Leclerc E (2009) Foliar transfer into the biosphere: review of translocation factors to cereal grains. J Environ Radioact 100:683–689

    CAS  Google Scholar 

  • Croft DP, Cameron SJ, Morrell CN, Lowenstein CJ, Ling F, Zareba W, Hopke PK, Utell MJ, Thurston SW, Thevenet-Morrison K (2017) Associations between ambient wood smoke and other particulate pollutants and biomarkers of systemic inflammation, coagulation and thrombosis in cardiac patients. Environ Res 154:352–361

    CAS  Google Scholar 

  • Dai L, Wang L, Li L, Liang T, Zhang Y, Ma C, Xing B (2018) Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci Total Environ 621:1433–1444

    CAS  Google Scholar 

  • Darquenne C, Prisk GK (2004) Aerosol deposition in the human respiratory tract breathing air and 80:20 heliox. J Aerosol Med 17:278–285. https://doi.org/10.1089/jam.2004.17.278

    Article  CAS  Google Scholar 

  • Delfino RJ, Quintana PJ, Floro J, Gastañaga VM, Samimi BS, Kleinman MT, Liu LS, Bufalino C, Wu C-F, McLaren CE (2004) Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environ Health Perspect 112:932

    CAS  Google Scholar 

  • Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM (2017) Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401

    CAS  Google Scholar 

  • Diepens NJ, Koelmans AA, Baveco H, van den Brink PJ, van den Heuvel-Greve MJ, Brock TC (2016) Prospective environmental risk assessment for sediment-bound organic chemicals: a proposal for tiered effect assessment. Rev Environ Contam Toxicol 239:1–77. Springer

    Google Scholar 

  • Dimitriou K, Kassomenos P (2017) Airborne heavy metals in two cities of North Rhine Westphalia – Performing inhalation cancer risk assessment in terms of atmospheric circulation. Chemosphere 186:78–87

    CAS  Google Scholar 

  • Directive (2005) Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off J Eur Union 23:0003–0016

    Google Scholar 

  • Djebbi C, Chaabani F, Font O, Queralt I, Querol X (2017) Atmospheric dust deposition on soils around an abandoned fluorite mine (Hammam Zriba, NE Tunisia). Environ Res 158:153–166. https://doi.org/10.1016/j.envres.2017.05.032

    Article  CAS  Google Scholar 

  • Dollard G (1986) Glasshouse experiments on the uptake of foliar applied lead. Environ Pollut Ser A Ecol Biol 40:109–119

    CAS  Google Scholar 

  • Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295:1127–1134

    CAS  Google Scholar 

  • Donisa C, Mocanu R, Steinnes E, Vasu A (2000) Heavy metal pollution by atmospheric transport in natural soils from the northern part of eastern Carpathians. Water Air Soil Pollut 120:347–358

    CAS  Google Scholar 

  • Donnelly JR (1993) Metal emissions control technologies for waste incineration. ACS Publications, Washington

    Google Scholar 

  • Dore AJ, Hallsworth S, McDonald AG, Werner M, Kryza M, Abbot J, Nemitz E, Dore CJ, Malcolm H, Vieno M (2014) Quantifying missing annual emission sources of heavy metals in the United Kingdom with an atmospheric transport model. Sci Total Environ 479:171–180

    Google Scholar 

  • Douay F, Pruvot C, Roussel H, Ciesielski H, Fourrier H, Proix N, Waterlot C (2008) Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water Air Soil Pollut 188:247–260

    CAS  Google Scholar 

  • Dubey B, Pal AK, Singh G (2012) Trace metal composition of airborne particulate matter in the coal mining and non–mining areas of Dhanbad Region, Jharkhand, India. Atmos Pollut Res 3:238–246

    CAS  Google Scholar 

  • Duong TT, Lee B-K (2011) Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manage 92:554–562

    CAS  Google Scholar 

  • Edelstein M, Ben-Hur M (2018) Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Sci Hortic 234:431–444

    CAS  Google Scholar 

  • El-Aila H, El-Sayed S, Yassen A (2015) Response of spinach plants to nanoparticles fertilizer and foliar application of iron. Int J Environ 4:181–185

    Google Scholar 

  • Ercilla-Montserrat M, Muñoz P, Montero JI, Gabarrell X, Rieradevall J (2018) A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona). J Clean Prod 195:385–395

    CAS  Google Scholar 

  • Ettler V, Johan Z, Baronnet A, Jankovský F, Gilles C, Mihaljevič M, Šebek O, Strnad L, Bezdička P (2005) Mineralogy of air-pollution-control residues from a secondary lead smelter: environmental implications. Environ Sci Technol 39:9309–9316

    CAS  Google Scholar 

  • Facts G (2008) Facts on health and the environment. Obtained of facts on health and the environment. http://www.greenfacts.org/es/cambio-climatico-ie5-base-ciencia/. Accessed 2

  • Feng X, Dang Z, Huang W, Yang C (2009) Chemical speciation of fine particle bound trace metals. Int J Environ Sci Technol 6:337–346

    CAS  Google Scholar 

  • Fernández V, Brown PH (2013) From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Front Plant Sci 4:289

    Google Scholar 

  • Fernández-Olmo I, Andecochea C, Ruiz S, Fernández-Ferreras JA, Irabien A (2016) Local source identification of trace metals in urban/industrial mixed land-use areas with daily PM10 limit value exceedances. Atmos Res 171:92–106

    Google Scholar 

  • Foucault Y, Lévêque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment. Chemosphere 93:1430–1435. https://doi.org/10.1016/j.chemosphere.2013.07.040

    Article  CAS  Google Scholar 

  • Fowler D (2002) Pollutant deposition and uptake by vegetation. Air Pollut Plant Life 2:43–67

    Google Scholar 

  • Friberg L, Elinder C, Kjellstrom T (1992) Environmental health criteria 134: cadmium. World Health Organization, Geneva

    Google Scholar 

  • Fryzova R, Pohanka M, Martinkova P, Cihlarova H, Brtnicky M, Hladky J, Kynicky J (2018) Oxidative stress and heavy metals in plants. Rev Environ Contam Toxicol 245:129–156

    Google Scholar 

  • Gajbhiye T, Kim K-H, Pandey SK, Brown RJ (2016a) Foliar transfer of dust and heavy metals on roadside plants in a subtropical environment. Asian J Atmos Environ 10:137–145

    CAS  Google Scholar 

  • Gajbhiye T, Pandey SK, Kim K-H, Szulejko JE, Prasad S (2016b) Airborne foliar transfer of PM bound heavy metals in Cassia siamea: a less common route of heavy metal accumulation. Sci Total Environ 573:123–130

    CAS  Google Scholar 

  • Galbreath K, Crocker C, Nyberg C, Huggins F, Huffman G, Larson K (2003) Nickel speciation measurements of urban particulate matter: method evaluation and relevance to risk assessment. J Environ Monit 5

    Google Scholar 

  • Gandois L, Tipping E, Dumat C, Probst A (2010) Canopy influence on trace metal atmospheric inputs on forest ecosystems: speciation in throughfall. Atmos Environ 44:824–833

    CAS  Google Scholar 

  • García-Florentino C, Maguregui M, Morillas H, Marcaida I, Salcedo I, Madariaga JM (2018) Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution. Sci Total Environ 626:441–450

    Google Scholar 

  • Geiger DB (1975) Phloem loading and associated processes. In: Phloem transport. Springer, Boston, pp 251–295

    Google Scholar 

  • Gharaibeh AA, El-Rjoob A-WO, Harb MK (2010) Determination of selected heavy metals in air samples from the northern part of Jordan. Environ Monit Assess 160:425–429

    CAS  Google Scholar 

  • Ghio AJ, Carraway MS, Madden MC (2012) Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev 15:1–21

    CAS  Google Scholar 

  • Glorennec P, Bemrah N, Tard A, Robin A, Le Bot B, Bard D (2007) Probabilistic modeling of young children’s overall lead exposure in France: integrated approach for various exposure media. Environ Int 33:937–945

    CAS  Google Scholar 

  • Goix S, Lévêque T, Xiong T-T, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C (2014) Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ Res 133:185–194. https://doi.org/10.1016/j.envres.2014.05.015

    Article  CAS  Google Scholar 

  • González JA, Prado FE, Piacentini RD (2014) Atmospheric dust accumulation on native and non-native species: effects on gas exchange parameters. J Environ Qual 43:801–808

    Google Scholar 

  • Gonzalez-Castanedo Y, Sanchez-Rodas D, Sanchez de la Campa AM, Pandolfi M, Alastuey A, Cachorro VE, Querol X, de la Rosa JD (2015) Arsenic species in atmospheric particulate matter as tracer of the air quality of Donana Natural Park (SW Spain). Chemosphere 119:1296–1303. https://doi.org/10.1016/j.chemosphere.2014.09.093

    Article  CAS  Google Scholar 

  • Grantz D, Garner J, Johnson D (2003a) Ecological effects of particulate matter. Environ Int 29:213–239

    CAS  Google Scholar 

  • Grantz DA, Garner JHB, Johnson DW (2003b) Ecological effects of particulate matter. Environ Int 29:213–239. https://doi.org/10.1016/S0160-4120(02)00181-2

    Article  CAS  Google Scholar 

  • Gugamsetty B, Wei H, Liu C-N, Awasthi A, Hsu S-C, Tsai C-J, Roam G-D, Wu Y-C, Chen C-F (2012) Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using positive matrix factorization. Aerosol Air Qual Res 12:476–491. https://doi.org/10.4209/aaqr.2012.04.0084

    Article  CAS  Google Scholar 

  • Gunawardena J, Egodawatta P, Ayoko GA, Goonetilleke A (2013) Atmospheric deposition as a source of heavy metals in urban stormwater. Atmos Environ 68:235–242

    CAS  Google Scholar 

  • Guney M, Zagury GJ, Dogan N, Onay TT (2010) Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. J Hazard Mater 182:656–664

    CAS  Google Scholar 

  • Gupta AK, Karar K, Srivastava A (2007) Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India. J Hazard Mater 142:279–287. https://doi.org/10.1016/j.jhazmat.2006.08.013

    Article  CAS  Google Scholar 

  • Gurer-Orhan H, Sabır HU, Özgüneş H (2004) Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers. Toxicology 195:147–154

    CAS  Google Scholar 

  • Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F, Gholampour A, Arhami M, Kashani H, Zare A (2015) Characterization of PAHs and metals in indoor/outdoor PM 10/PM 2.5/PM 1 in a retirement home and a school dormitory. Sci Total Environ 527:100–110

    Google Scholar 

  • Helali MA, Oueslati W, Zaaboub N, Added A, Aleya L (2016) Chemical speciation of Fe, Mn, Pb, Zn, Cd, Cu, Co, Ni and Cr in the suspended particulate matter off the Mejerda River Delta (Gulf of Tunis, Tunisia). J African Earth Sci 118:35–44

    CAS  Google Scholar 

  • Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2016) Foliar applied nanoscale and microscale CeO 2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563:904–911

    Google Scholar 

  • Hoodaji M, Ataabadi M, Najafi P (2012) Biomonitoring of airborne heavy metal contamination. In: Air pollution-monitoring, modelling, health and control. InTech, Spinach

    Google Scholar 

  • Hou H, Takamatsu T, Koshikawa M, Hosomi M (2005) Trace metals in bulk precipitation and throughfall in a suburban area of Japan. Atmos Environ 39:3583–3595

    CAS  Google Scholar 

  • Hu W, Wang H, Dong L, Huang B, Borggaard OK, Hansen HCB, He Y, Holm PE (2018) Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach. Environ Pollut 237:650–661

    CAS  Google Scholar 

  • Huang H, Jiang Y, Xu X, Cao X (2018) In vitro bioaccessibility and health risk assessment of heavy metals in atmospheric particulate matters from three different functional areas of Shanghai, China. Sci Total Environ 610:546–554

    Google Scholar 

  • Hurley PJ, Physick WL, Luhar AK (2005) TAPM: a practical approach to prognostic meteorological and air pollution modelling. Environ Model Softw 20:737–752

    Google Scholar 

  • IARC (2013) Cancer, outdoor air pollution a leading environmental cause of cancer deaths. World Health Organization, International Agency for Research on Cancer: Diesel Engine Exhaust Carcinogenic

    Google Scholar 

  • Iffland R, Balling M, Börsch G, Herold C, Kaschade W, Löffler T, Schmidtmann U, Stettner J (1994) Evaluation of an increased blood level of GGT, CDT, methanol, acetone and isopropanol in alcohol intoxicated automobile drivers. Alcoholism indicators instead of medical-psychological examination. Blutalkohol 31:273–314

    CAS  Google Scholar 

  • Jeanjean APR, Buccolieri R, Eddy J, Monks PS, Leigh RJ (2017) Air quality affected by trees in real street canyons: the case of Marylebone neighbourhood in central London. Urban For Urban Green 22:41–53. https://doi.org/10.1016/j.ufug.2017.01.009

    Article  Google Scholar 

  • Jia J, Cheng S, Yao S, Xu T, Zhang T, Ma Y, Wang H, Duan W (2018) Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry. Atmos Environ 182:115–127

    CAS  Google Scholar 

  • Jimoda L (2012) Effects of particulate matter on human health, the ecosystem, climate and materials: a review, Facta universitatis-series: working and living enviromental protection, vol 9, pp 27–44

    Google Scholar 

  • Juda-Rezler K, Reizer M, Oudinet J-P (2011) Determination and analysis of PM 10 source apportionment during episodes of air pollution in Central Eastern European urban areas: the case of wintertime 2006. Atmos Environ 45:6557–6566

    CAS  Google Scholar 

  • Jung MC (2008) Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W Mine. Sensors (Basel) 8:2413–2423

    Google Scholar 

  • Kabelitz L, Sievers H (2004) Contaminants of medicinal and food herbs with a view to EU regulations. Innovations Food Technol 1:25–27

    Google Scholar 

  • Kang X, Song J, Yuan H, Duan L, Li X, Li N, Liang X, Qu B (2017) Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments: bioavailability, ecological risk assessment and source analysis on a centennial timescale. Ecotoxicol Environ Saf 143:296–306

    CAS  Google Scholar 

  • Kastury F, Smith E, Juhasz AL (2017) A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal (loid) s from ambient particulate matter or dust. Sci Total Environ 574:1054–1074

    CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017a) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    CAS  Google Scholar 

  • Khalid S, Shahid M, Dumat C, Niazi NK, Bibi I, Gul Bakhat HFS, Abbas G, Murtaza B, Javeed HMR (2017b) Influence of groundwater and wastewater irrigation on lead accumulation in soil and vegetables: implications for health risk assessment and phytoremediation. Int J Phytoremediation 19(11):1037–1046. https://doi.org/10.1080/15226514.2017.1319330

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Natasha, Bibi I, Sarwar T, Shah AH, Niazi NK (2018) A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. Int J Environ Res Public Health 15:895

    Google Scholar 

  • Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW, Tømmervik H, Zagajewski B, Ziółkowski D, Jerz D (2018) Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ 627:438–449

    Google Scholar 

  • Kolker A, Engle MA, Peucker-Ehrenbrink B, Geboy NJ, Krabbenhoft DP, Bothner MH, Tate MT (2013) Atmospheric mercury and fine particulate matter in coastal New England: implications for mercury and trace element sources in the northeastern United States. Atmos Environ 79:760–768

    CAS  Google Scholar 

  • Krzemińska-Flowers M, Bem H, Górecka H (2006) Trace metals concentration in size-fractioned urban air particulate matter in Łódź, Poland. I. Seasonal and site fluctuations. Pol J Environ Stud 15(5):759–767

    Google Scholar 

  • Kumar R, Sharma S, Kaundal M, Sharma S, Thakur M (2016) Response of damask rose (Rosa damascena Mill.) to foliar application of magnesium (Mg), copper (Cu) and zinc (Zn) sulphate under western Himalayas. Ind Crop Prod 83:596–602

    CAS  Google Scholar 

  • Lanzerstorfer C (2018) Heavy metals in the finest size fractions of road-deposited sediments. Environ Pollut 239:522–531

    CAS  Google Scholar 

  • Lawal AO (2017) Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: the role of Nrf2 and AhR-mediated pathways. Toxicol Lett 270:88–95

    CAS  Google Scholar 

  • Li S, Yang J, Ruan X, Zhang G (2014) Atmospheric deposition of heavy metals and their impacts on soil environment in typical urban areas of Nanjing. China Environ Sci 34:22–29

    Google Scholar 

  • Li Q, Liu H, Alattar M, Jiang S, Han J, Ma Y, Jiang C (2015) The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM(2.5) in rats. Sci Rep 5:16936. https://doi.org/10.1038/srep16936

    Article  CAS  Google Scholar 

  • Li X, Yang H, Zhang C, Zeng G, Liu Y, Xu W, Wu Y, Lan S (2017a) Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China. Chemosphere 170:17–24. https://doi.org/10.1016/j.chemosphere.2016.12.011

    Article  CAS  Google Scholar 

  • Li Y, Wang Y, Li Y, Li T, Mao H, Talbot R, Nie X, Wu C, Zhao Y, Hou C (2017b) Characteristics and potential sources of atmospheric particulate mercury in Jinan, China. Sci Total Environ 574:1424–1431

    CAS  Google Scholar 

  • Li X, Li Z, Lin C-J, Bi X, Liu J, Feng X, Zhang H, Chen J, Wu T (2018) Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Ecotoxicol Environ Saf 161:99–110

    CAS  Google Scholar 

  • Liang J, Fang H, Zhang T, Wang X, Liu Y (2017a) Heavy metal in leaves of twelve plant species from seven different areas in Shanghai, China. Urban Forest Urban Greening 27:390–398

    Google Scholar 

  • Liang J, Feng C, Zeng G, Gao X, Zhong M, Li X, Li X, He X, Fang Y (2017b) Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ Pollut 225:681–690. https://doi.org/10.1016/j.envpol.2017.03.057

    Article  CAS  Google Scholar 

  • Limbeck A, Handler M, Puls C, Zbiral J, Bauer H, Puxbaum H (2009) Impact of mineral components and selected trace metals on ambient PM10 concentrations. Atmos Environ 43:530–538. https://doi.org/10.1016/j.atmosenv.2008.10.012

    Article  CAS  Google Scholar 

  • Little P (1978) Deposition of exhaust lead and its impact on plants. Symposium “The impact of road traffic on plants” – September, vol. 513. pp 49–54

    Google Scholar 

  • Liu J, Cao Z, Zou S, Liu H, Hai X, Wang S, Duan J, Xi B, Yan G, Zhang S (2018a) An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Sci Total Environ 616:417–426

    Google Scholar 

  • Liu Y, Xing J, Wang S, Fu X, Zheng H (2018b) Source-specific speciation profiles of PM 2.5 for heavy metals and their anthropogenic emissions in China. Environ Pollut 239:544–553

    CAS  Google Scholar 

  • Löndahl J, Möller W, Pagels JH, Kreyling WG, Swietlicki E, Schmid O (2014) Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review. J Aerosol Med Pulm Drug Deliv 27:229–254. https://doi.org/10.1089/jamp.2013.1044

    Article  Google Scholar 

  • Lough GC, Schauer JJ, Park J-S, Shafer MM, DeMinter JT, Weinstein JP (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39:826–836

    CAS  Google Scholar 

  • Lü J, Jiao W-B, Qiu H-Y, Chen B, Huang X-X, Kang B (2018) Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You’xi County southeast China. Geoderma 310:99–106

    Google Scholar 

  • Lynam MM, Dvonch JT, Hall NL, Morishita M, Barres JA (2015) Trace elements and major ions in atmospheric wet and dry deposition across central Illinois, USA. Air Qual Atmos Health 8:135–147

    CAS  Google Scholar 

  • Mansouri B, Maleki A, Davari B, Karimi J, Momeneh V (2015) Estimation of target hazard quotients for heavy metals intake through the consumption of fish from Sirvan River in Kermanshah Province, Iran. J Adv Environ Health Res 3

    Google Scholar 

  • Markus AA, Parsons JR, Roex EW, de Voogt P, Laane RW (2016) Modelling the release, transport and fate of engineered nanoparticles in the aquatic environment – a review. Rev Environ Contam Toxicol 243:53–87. Springer

    Google Scholar 

  • Martin JAR, Gutiérrez C, Torrijos M, Nanos N (2018) Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region. Environ Pollut 239:438–447

    Google Scholar 

  • McGuinn LA, Ward-Caviness C, Neas LM, Schneider A, Di Q, Chudnovsky A, Schwartz J, Koutrakis P, Russell AG, Garcia V (2017) Fine particulate matter and cardiovascular disease: comparison of assessment methods for long-term exposure. Environ Res 159:16–23

    CAS  Google Scholar 

  • Melaku S, Morris V, Raghavan D, Hosten C (2008) Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC. Environ Pollut 155:88–98. https://doi.org/10.1016/j.envpol.2007.10.038

    Article  CAS  Google Scholar 

  • Mo L, Ma Z, Xu Y, Sun F, Lun X, Liu X, Chen J, Yu X (2015) Assessing the capacity of plant species to accumulate particulate matter in Beijing, China. PLoS One 10:e0140664

    Google Scholar 

  • Mohanraj R, Azeez PA, Priscilla T (2004) Heavy metals in airborne particulate matter of urban Coimbatore. Arch Environ Contam Toxicol 47:162–167. https://doi.org/10.1007/s00244-004-3054-9

    Article  CAS  Google Scholar 

  • Møller P, Loft S (2010) Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. Environ Health Perspect 118:1126

    Google Scholar 

  • Momani KA, JIRIES AG, Jaradat QM (2000) Atmospheric deposition of Pb, Zn, Cu, and Cd in Amman, Jordan. Turk J Chem 24:231–238

    CAS  Google Scholar 

  • Mombo S, Foucault Y, Deola F, Gaillard I, Goix S, Shahid M, Schreck E, Pierart A, Dumat C (2015) Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soil Sediment:1–11. https://doi.org/10.1007/s11368-015-1069-7

  • Mombo S, Dumat C, Shahid M, Schreck E (2016) A socio-scientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption. Environ Sci Pollut Res:1–15

    Google Scholar 

  • Morawska L, Bofinger ND, Kocis L, Nwankwoala A (1998) Submicrometer and supermicrometer particles from diesel vehicle emissions. Environ Sci Technol 32:2033–2042

    CAS  Google Scholar 

  • Morawska L, Ristovski Z, Jayaratne E, Keogh DU, Ling X (2008) Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Environ 42:8113–8138

    CAS  Google Scholar 

  • Mukherjee A, Agrawal M (2017) A global perspective of fine particulate matter pollution and its health effects. Rev Environ Contam Toxicol 244:5–51. Springer

    Google Scholar 

  • Murtaza B, Shah NS, Sayed M, Khan JA, Imran M, Shahid M, Khan ZUH, Ghani A, Murtaza G, Muhammad N (2019) Synergistic effects of bismuth coupling on the reactivity and reusability of zerovalent iron nanoparticles for the removal of cadmium from aqueous solution. Sci Total Environ 669:333–341

    CAS  Google Scholar 

  • Nadal M, Schuhmacher M, Domingo JL (2004) Metal pollution of soils and vegetation in an area with petrochemical industry. Sci Total Environ 321:59–69. https://doi.org/10.1016/j.scitotenv.2003.08.029

    Article  CAS  Google Scholar 

  • Naderizadeh Z, Khademi H, Ayoubi S (2016) Biomonitoring of atmospheric heavy metals pollution using dust deposited on date palm leaves in southwestern Iran. Atmosfera 29:141–155

    CAS  Google Scholar 

  • Natasha, Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018a) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    CAS  Google Scholar 

  • Natasha, Shahid M, Dumat C, Khalid S, Rabbani F, Farooq ABU, Amjad M, Abbas G, Niazi NK (2018b) Foliar uptake of arsenic nanoparticles by spinach: an assessment of physiological and human health risk implications. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-018-3867-0

  • National Research Council (2000) Committee on Health Effects of Waste Incineration, Board on Environmental Studies and Toxicology, Commission on Life Sciences: Waste Incineration & Public Health. National Academy Press, Washington

    Google Scholar 

  • Nowak DJ (1994) Air pollution removal by Chicago’s urban forest. Chicago’s urban forest ecosystem: results of the Chicago urban forest climate project, pp 63–81

    Google Scholar 

  • Ohmsen GS (2001) Characterization of fugitive material within a primary lead smelter. J Air Waste Manage Assoc 51:1443–1451

    CAS  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228. https://doi.org/10.3390/ijms140510197

    Article  CAS  Google Scholar 

  • Osán J, Meirer F, Groma V, Török S, Ingerle D, Streli C, Pepponi G (2010) Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry. Spectrochim Acta B At Spectrosc 65:1008–1013

    Google Scholar 

  • Ouyang W, Wang Y, Lin C, He M, Hao F, Liu H, Zhu W (2018) Heavy metal loss from agricultural watershed to aquatic system: a scientometrics review. Sci Total Environ 637:208–220

    Google Scholar 

  • Pan Y, Wang Y (2015) Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmos Chem Phys 15:951–972

    Google Scholar 

  • Pandey A, Tiwari K, Pandey J (2008) Dust load and heavy metals deposition in a seasonally dry tropical urban environment in Varanasi. Curr World Environ 7:45–54. https://doi.org/10.12944/cwe.3.1.07

    Article  Google Scholar 

  • Paoletti E, Schaub M, Matyssek R, Wieser G, Augustaitis A, Bastrup-Birk A, Bytnerowicz A, Günthardt-Goerg M, Müller-Starck G, Serengil Y (2010) Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environ Pollut 158:1986–1989

    CAS  Google Scholar 

  • Parekh H, Patel M, Tiwari KK (2016) A detailed study of heavy metal accumulation across highway plant species. Res J Agr Environ Manag 5:032–036

    Google Scholar 

  • Park SS, Kim YJ (2005) Source contributions to fine particulate matter in an urban atmosphere. Chemosphere 59:217–226

    CAS  Google Scholar 

  • Pattanaik S, Huggins FE, Huffman GP (2016) The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA PM). Sci Total Environ 562:898–905

    CAS  Google Scholar 

  • Peng RD, Chang HH, Bell ML, McDermott A, Zeger SL, Samet JM, Dominici F (2008) Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among Medicare patients. JAMA 299:2172–2179

    CAS  Google Scholar 

  • Peng C, Wang M, Chen W (2016) Modelling cadmium contamination in paddy soils under long-term remediation measures: model development and stochastic simulations. Environ Pollut 216:146–155

    CAS  Google Scholar 

  • Piao F, Sun X, Liu S, Yamauchi T (2008) Concentrations of toxic heavy metals in ambient particulate matter in an industrial area of northeastern China. Front Med China 2:207–210

    Google Scholar 

  • Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234

    CAS  Google Scholar 

  • Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Cardiovascular mortality and long-term exposure to particulate air pollution. Circulation 109:71–77

    Google Scholar 

  • Popoola L, Adebanjo S, Adeoye B (2018) Assessment of atmospheric particulate matter and heavy metals: a critical review. Int J Environ Sci Technol 15:935–948

    Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 213. Springer, New York, pp 113–136

    Google Scholar 

  • Pratte S, Bao K, Shen J, Mackenzie L, Klamt A-M, Wang G, Xing W (2018) Recent atmospheric metal deposition in peatlands of northeast China: a review. Sci Total Environ 626:1284–1294

    CAS  Google Scholar 

  • Pruvot C, Douay F, Hervé F, Waterlot C (2006) Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas (6 pp). J Soil Sediment 6:215–220

    CAS  Google Scholar 

  • Quezada-Maldonado EM, Sánchez-Pérez Y, Chirino YI, Vaca-Paniagua F, García-Cuellar CM (2018) miRNAs deregulation in lung cells exposed to airborne particulate matter (PM 10) is associated with pathways deregulated in lung tumors. Environ Pollut 241:351–358

    CAS  Google Scholar 

  • Quiterio SL, Da Silva CRS, Arbilla G, Escaleira V (2004) Metals in airborne particulate matter in the industrial district of Santa Cruz, Rio de Janeiro, in an annual period. Atmos Environ 38:321–331

    CAS  Google Scholar 

  • Raaschou-Nielsen O, Beelen R, Wang M, Hoek G, Andersen Z, Hoffmann B, Stafoggia M, Samoli E, Weinmayr G, Dimakopoulou K (2016) Particulate matter air pollution components and risk for lung cancer. Environ Int 87:66–73

    CAS  Google Scholar 

  • Rachwał M, Kardel K, Magiera T, Bens O (2017a) Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma 295:10–21. https://doi.org/10.1016/j.geoderma.2017.02.007

    Article  CAS  Google Scholar 

  • Rachwał M, Kardel K, Magiera T, Bens O (2017b) Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma 295:10–21

    Google Scholar 

  • Rafiq M, Shahid M, Abbas G, Shamshad S, Khalid S, Niazi NK, Dumat C (2017) Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. Int J Phytoremediation 19:662–669

    CAS  Google Scholar 

  • Rafiq M, Shahid M, Shamshad S, Khalid S, Niazi NK, Abbas G, Saeed MF, Ali M, Murtaza B (2018) A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soil Sediment 18:2271–2281

    CAS  Google Scholar 

  • Rehman ZU, Khan S, Qin K, Brusseau ML, Shah MT, Din I (2016) Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. Sci Total Environ 550:321–329

    CAS  Google Scholar 

  • Rizzio E, Bergamaschi L, Valcuvia M, Profumo A, Gallorini M (2001) Trace elements determination in lichens and in the airborne particulate matter for the evaluation of the atmospheric pollution in a region of northern Italy. Environ Int 26:543–549

    CAS  Google Scholar 

  • Rohbock E (1982) Atmospheric removal of airborne metals by wet and dry deposition. In: Deposition of atmospheric pollutants. Springer, Berlin, pp 159–171

    Google Scholar 

  • Roy D, Singh G, Gosai N (2015) Identification of possible sources of atmospheric PM10 using particle size, SEM-EDS and XRD analysis, Jharia Coalfield Dhanbad, India. Environ Monit Assess 187:680. https://doi.org/10.1007/s10661-015-4853-3

    Article  CAS  Google Scholar 

  • Safari M, Ramavandi B, Sanati AM, Sorial GA, Hashemi S, Tahmasebi S (2018) Potential of trees leaf/bark to control atmospheric metals in a gas and petrochemical zone. J Environ Manage 222:12–20

    CAS  Google Scholar 

  • Sakata M, Asakura K (2011) Atmospheric dry deposition of trace elements at a site on Asian-continent side of Japan. Atmos Environ 45:1075–1083

    CAS  Google Scholar 

  • Salim R, Al-Subu MM, Atallah A (1993a) Effects of root and foliar treatments with lead, cadmium, and copper on the uptake distribution and growth of radish plants. Environ Int 19:393–404. https://doi.org/10.1016/0160-4120(93)90130-A

    Article  CAS  Google Scholar 

  • Salim R, Al-Subu M, Atallah A (1993b) Effects of root and foliar treatments with lead, cadmium, and copper on the uptake distribution and growth of radish plants. Environ Int 19:393–404

    CAS  Google Scholar 

  • Sanchez-Rodas D, Alsioufi L, de la Campa AMS, Gonzalez-Castanedo Y (2017) Antimony speciation as geochemical tracer for anthropogenic emissions of atmospheric particulate matter. J Hazard Mater 324:213–220

    CAS  Google Scholar 

  • Santibáñez-Andrade M, Quezada-Maldonado EM, Osornio-Vargas Á, Sánchez-Pérez Y, García-Cuellar CM (2017) Air pollution and genomic instability: the role of particulate matter in lung carcinogenesis. Environ Pollut 229:412–422

    Google Scholar 

  • Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K (2011) Trees as bioindicator of heavy metal pollution in three European cities. Environ Pollut 159:3560–3570

    CAS  Google Scholar 

  • Schreck E, Bonnard R, Laplanche C, Leveque T, Foucault Y, Dumat C (2012a) DECA: a new model for assessing the foliar uptake of atmospheric lead by vegetation, using Lactuca sativa as an example. J Environ Manage 112:233–239

    CAS  Google Scholar 

  • Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L, Castrec-Rouelle M, Uzu G, Dumat C (2012b) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ 427:253–262

    Google Scholar 

  • Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, Nowak J, Stefaniak EA, Magnin V, Ranieri V, Dumat C (2014) Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves. Sci Total Environ 476:667–676

    Google Scholar 

  • Schulz H, Brand P (2000) Particle deposition in the respiratory tract. In: Gehr P, Heyder J (eds) Particle–Lung interactions. Marcel Dekker, New York, pp 229–290

    Google Scholar 

  • Schwartz J, Neas LM (2000) Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 11:6–10

    CAS  Google Scholar 

  • Seemayer NH, Hadnagy W (1992) Environmental hygiene II. Springer, Berlin

    Google Scholar 

  • Selmi W, Weber C, Rivière E, Blond N, Mehdi L, Nowak D (2016) Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For Urban Green 17:192–201. https://doi.org/10.1016/j.ufug.2016.04.010

    Article  Google Scholar 

  • Serengil Y, Augustaitis A, Bytnerowicz A, Grulke N, Kozovitz A, Matyssek R, Müller-Starck G, Schaub M, Wieser G, Aydin Coskun A (2011) Adaptation of forest ecosystems to air pollution and climate change: a global assessment on research priorities. iForest Biogeosci Forest 4:44

    Google Scholar 

  • Shah MH, Shaheen N, Nazir R (2012) Assessment of the trace elements level in urban atmospheric particulate matter and source apportionment in Islamabad, Pakistan. Atmos Pollut Res 3:39–45

    CAS  Google Scholar 

  • Shahid M (2017) Biogeochemical behavior of heavy metals in soil-plant system. Higher Education Commission, Islamabad

    Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012a) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219–220:1–12. https://doi.org/10.1016/j.jhazmat.2012.01.060

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Silvestre J, Pinelli E (2012b) Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fertil Soils 48:689–697. https://doi.org/10.1007/s00374-012-0662-9

    Article  CAS  Google Scholar 

  • Shahid M, Arshad M, Kaemmerer M, Pinelli E, Probst A, Baque D, Pradere P, Dumat C (2012c) Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity. Int J Phytoremediation 14:493–505

    CAS  Google Scholar 

  • Shahid M, Xiong T, Castrec-Rouelle M, Leveque T, Dumat C (2013) Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci 25:2451–2459. https://doi.org/10.1016/S1001-0742(12)60197-1

    Article  CAS  Google Scholar 

  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44. Springer

    CAS  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. Crop Prod Global Environ Issues:1–25. Springer

    Google Scholar 

  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PM (2017a) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241:73–137

    CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017b) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063

    Article  CAS  Google Scholar 

  • Shahid M, Khalid M, Dumat C, Khalid S, Niazi NK, Imran M, Bibi I, Ahmad I, Hammad M, Tabassum RA (2017c) Arsenic level and risk assessment of groundwater in Vehari, Punjab Province, Pakistan. Expo Health. https://doi.org/10.1007/s12403-017-0257-7

  • Shahid M, Pinelli E, Dumat C (2018a) Tracing trends in plant physiology and biochemistry: need of databases from genetic to kingdom level. Plant Physiol Biochem 127:630–635

    CAS  Google Scholar 

  • Shahid M, Niazi NK, Dumat C, Naidu R, Khalid S, Rahman MM, Bibi I (2018b) A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ Pollut 242(Pt A):307–319

    CAS  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Shahid M, Arshad M (2015) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12:12371–12390

    CAS  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Shahid M, Saqib ZA, Nawaz MF, Shaheen SM, Wang H, Tsang DC, Bundschuh J (2019) Exploring the arsenic removal potential of various biosorbents from water. Environ Int 123:567–579

    CAS  Google Scholar 

  • Shamshad S, Shahid M, Rafiq M, Khalid S, Dumat C, Sabir M, Murtaza B, Farooq ABU, Shah NS (2018) Effect of organic amendments on cadmium stress to pea: a multivariate comparison of germinating vs young seedlings and younger vs older leaves. Ecotoxicol Environ Saf 151:91–97

    CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2008) Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi city, India. Environ Monit Assess 142:269–278

    CAS  Google Scholar 

  • Sharma S, Nagpal AK, Kaur I (2018) Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem 255:15–22

    CAS  Google Scholar 

  • Shigeta T (2000) Environmental investigation in Pakistan. Pak-EPA/JICA, Islamabad

    Google Scholar 

  • Sicard P, Augustaitis A, Belyazid S, Calfapietra C, de Marco A, Fenn M, Bytnerowicz A, Grulke N, He S, Matyssek R (2016) Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. Environ Pollut 213:977–987

    CAS  Google Scholar 

  • Sobanska S, Ledésert B, Deneele D, Laboudigue A (2000) Alteration in soils of slag particles resulting from lead smelting. Comptes Rendus de l’Academie des Sciences – Series IIA – Earth and Planetary Science 331:271–278

    CAS  Google Scholar 

  • Squadrito GL, Cueto R, Dellinger B, Pryor WA (2001) Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol Med 31:1132–1138. https://doi.org/10.1016/S0891-5849(01)00703-1

    Article  CAS  Google Scholar 

  • Stein A, Draxler RR, Rolph GD, Stunder BJ, Cohen M, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077

    Google Scholar 

  • Swaileh K, Hussein RM, Abu-Elhaj S (2004) Assessment of heavy metal contamination in roadside surface soil and vegetation from the West Bank. Arch Environ Contam Toxicol 47:23–30

    CAS  Google Scholar 

  • Szolnoki Z, Farsang A, Puskás I (2013) Cumulative impacts of human activities on urban garden soils: origin and accumulation of metals. Environ Pollut 177:106–115

    CAS  Google Scholar 

  • Tabassum RA, Shahid M, Dumat C, Niazi NK, Khalid S, Shah NS, Imran M, Khalid S (2018) Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-1276-z

  • Talbi A, Kerchich Y, Kerbachi R, Boughedaoui M (2017) Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Environ Pollut. https://doi.org/10.1016/j.envpol.2017.09.041

  • Tang Y, Han G (2017) Characteristics of major elements and heavy metals in atmospheric dust in Beijing, China. J Geochem Explor 176:114–119. https://doi.org/10.1016/j.gexplo.2015.12.002

    Article  CAS  Google Scholar 

  • Tian H, Zhu C, Gao J, Cheng K, Hao J, Wang K, Hua S, Wang Y, Zhou J (2015) Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys 15:10127–10147

    CAS  Google Scholar 

  • Tierranegra-García N, Salinas-Soto P, Torres-Pacheco I, Ocampo-Velázquez RV, Rico-García E, Mendoza-Diaz SO, Feregrino-Pérez AA, Mercado-Luna A, Vargas-Hernandez M, Soto-Zarazúa GM (2011) Effect of foliar salicylic acid and methyl jasmonate applications on protection against pill-bugs in lettuce plants (Lactuca sativa). Phytoparasitica 39:137–144

    Google Scholar 

  • Tiwari K, Pandey A, Pandey J (2008) Atmospheric deposition of heavy metals in a seasonally dry tropical urban environment (India). J Environ Res Dev 2

    Google Scholar 

  • Tomašević M, Rajšić S, Đorđević D, Tasić M, Krstić J, Novaković V (2004) Heavy metals accumulation in tree leaves from urban areas. Environ Chem Lett 2:151–154

    Google Scholar 

  • Türtscher S, Berger P, Lindebner L, Berger TW (2017) Declining atmospheric deposition of heavy metals over the last three decades is reflected in soil and foliage of 97 beech (Fagus sylvatica) stands in the Vienna Woods. Environ Pollut 230:561–573

    Google Scholar 

  • Ulrich E, Lelong N, Lanier M, Schneider A (1995) Interception des pluies en forêt: facteurs déterminants. Bull Technique:33–45

    Google Scholar 

  • USEPA (1986) Integrated Risk Information System (IRIS): chemical assessment summary. National Center for Environmental Assessment, U.S. Environmental Protection Agency. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0276_summary.pdf

  • USEPA (1997) Exposure factors handbook, US EPA. Environmental Protection Agency, Washington

    Google Scholar 

  • USEPA (2009) United States, Environmental Protection Agency:Human Health Risk Assessment

    Google Scholar 

  • USEPA (2017) United States Environmental Protection Agency, Reducing Emissions of Hazardous Air Pollutants

    Google Scholar 

  • Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157:1178–1185

    CAS  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Muñoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042. https://doi.org/10.1021/es902190u

    Article  CAS  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Sauvain J-J, Pradere P, Dumat C (2011a) Characterization of lead-recycling facility emissions at various workplaces: major insights for sanitary risks assessment. J Hazard Mater 186:1018–1027

    CAS  Google Scholar 

  • Uzu G, Sauvain J-J, Baeza-Squiban A, Riediker M, Sánchez Sandoval Hohl M, Val S, Tack K, Denys S, Pradere P, Dumat C (2011b) In vitro assessment of the pulmonary toxicity and gastric availability of lead-rich particles from a lead recycling plant. Environ Sci Technol 45:7888–7895

    CAS  Google Scholar 

  • Valavanidis A, Fiotakis K, Bakeas E, Vlahogianni T (2005) Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep 10:37–51. https://doi.org/10.1179/135100005X21606

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 10:3886

    Google Scholar 

  • Viard B, Pihan F, Promeyrat S, Pihan J-C (2004) Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere 55:1349–1359

    CAS  Google Scholar 

  • Vijayanand C, Rajaguru P, Kalaiselvi K, Selvam KP, Palanivel M (2008) Assessment of heavy metal contents in the ambient air of the Coimbatore city, Tamilnadu, India. J Hazard Mater 160:548–553. https://doi.org/10.1016/j.jhazmat.2008.03.071

    Article  CAS  Google Scholar 

  • Viswanath B, Kim S (2016) Influence of nanotoxicity on human health and environment: the alternative strategies. Rev Environ Contam Toxicol 242:61–104. Springer

    Google Scholar 

  • von Schneidemesser E, Stone EA, Quraishi TA, Shafer MM, Schauer JJ (2010) Toxic metals in the atmosphere in Lahore, Pakistan. Sci Total Environ 408:1640–1648. https://doi.org/10.1016/j.scitotenv.2009.12.022

    Article  CAS  Google Scholar 

  • Voutsa D, Samara C (2002) Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmos Environ 36:3583–3590

    CAS  Google Scholar 

  • Wang Y, Li A, Zhan Y, Wei L, Li Y, Zhang G, Xie Y, Zhang J, Zhang Y, Shan Z (2007) Speciation of elements in atmospheric particulate matter by XANES. J Radioanal Nucl Chem 273:247–251

    CAS  Google Scholar 

  • Wang S, Wang F, Gao S, Wang X (2016) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut 227:1–13

    Google Scholar 

  • Wang Y, Cheng K, Wu W, Tian H, Yi P, Zhi G, Fan J, Liu S (2017) Atmospheric emissions of typical toxic heavy metals from open burning of municipal solid waste in China. Atmos Environ 152:6–15

    CAS  Google Scholar 

  • Wang Z, Hong C, Xing Y, Wang K, Li Y, Feng L, Ma S (2018) Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China. Ecotoxicol Environ Saf 154:329–336

    CAS  Google Scholar 

  • Weerasundara L, Amarasekara R, Magana-Arachchi D, Ziyath AM, Karunaratne D, Goonetilleke A, Vithanage M (2017) Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka. Sci Total Environ 584:803–812

    Google Scholar 

  • Weerasundara L, Magana-Arachchi D, Ziyath AM, Goonetilleke A, Vithanage M (2018) Health risk assessment of heavy metals in atmospheric deposition in a congested city environment in a developing country: Kandy City, Sri Lanka. J Environ Manage 220:198–206

    CAS  Google Scholar 

  • WHO (1987a) Air quality guidelines for Europe. European Series No. 23. Regional Office for Europe, World Health Organization, Copenhagen

    Google Scholar 

  • WHO (1987b) Air quality guidelines for Europe

    Google Scholar 

  • WHO (2000a) World Health Organization Air quality guidelines for Europe

    Google Scholar 

  • WHO (2000b) Air quality guidelines for Europe

    Google Scholar 

  • WHO (2014) Ambient (outdoor) air quality and health. Fact Sheet 313:2014

    Google Scholar 

  • WHO (2015) Life expectancy at birth (2002–2015). World Health Organization, Geneva

    Google Scholar 

  • WHO (2016) Global database on body mass index. World Health Organization, Geneva

    Google Scholar 

  • Winner WE, Atkinson CJ (1986) Absorption of air pollution by plants, and consequences for growth. Trends Ecol Evol 1:15–18. https://doi.org/10.1016/0169-5347(86)90061-3

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2006) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005-summary of risk assessment. World Health Organization, Copenhagen, 2010. WHO, Geneva

    Google Scholar 

  • Wu D, Zhang F, Lou W, Li D, Chen J (2017) Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels. Sci Total Environ 605:172–179

    Google Scholar 

  • Wu Y, Liu J, Zhai J, Cong L, Wang Y, Ma W, Zhang Z, Li C (2018) Comparison of dry and wet deposition of particulate matter in near-surface waters during summer. PLoS One 13:e0199241. https://doi.org/10.1371/journal.pone.0199241

    Article  CAS  Google Scholar 

  • Xiao X, Qin K, Sun X, Hui W, Yuan L, Wu L (2018) Will wheat be damaged by heavy metals on exposure to coal fly ash? Atmos Pollut Res 9:814–821

    CAS  Google Scholar 

  • Xiong T-T, Leveque T, Austruy A, Goix S, Schreck E, Dappe V, Sobanska S, Foucault Y, Dumat C (2014a) Foliar uptake and metal (loid) bioaccessibility in vegetables exposed to particulate matter. Environ Geochem Health 36:897–909

    CAS  Google Scholar 

  • Xiong T, Leveque T, Shahid M, Foucault Y, Mombo S, Dumat C (2014b) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43:1593–1600. https://doi.org/10.2134/jeq2013.11.0469

    Article  CAS  Google Scholar 

  • Xiong T, Austruy A, Pierart A, Shahid M, Schreck E, Mombo S, Dumat C (2016a) Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J Environ Sci 46:16–27

    CAS  Google Scholar 

  • Xiong T, Dumat C, Pierart A, Shahid M, Kang Y, Li N, Bertoni G, Laplanche C (2016b) Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil-plant-atmosphere transfers in urban areas, South China. Environ Geochem Health 38(6):1283–1301

    CAS  Google Scholar 

  • Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S (2017) Copper oxide nanoparticle foliar uptake, phytotoxicity and consequences for sustainable urban agriculture. Environ Sci Technol 51(9):5242–5251

    CAS  Google Scholar 

  • Xu L, Wang T, Wang J, Lu A (2017) Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China. Chemosphere 173:61–68

    CAS  Google Scholar 

  • Yan Y, Zhang Q, Wang GG, Fang Y-M (2016) Atmospheric deposition of heavy metals in Wuxi, China: estimation based on native moss analysis. Environ Monit Assess 188:360

    Google Scholar 

  • Yang J, McBride J, Zhou J, Sun Z (2005) The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Green 3:65–78

    Google Scholar 

  • Yang H-C, Chang S-H, Lu R, Liou D-M (2016a) The effect of particulate matter size on cardiovascular health in Taipei Basin, Taiwan. Comput Methods Programs Biomed 137:261–268

    Google Scholar 

  • Yang Y, Chen W, Wang M, Peng C (2016b) Regional accumulation characteristics of cadmium in vegetables: Influencing factors, transfer model and indication of soil threshold content. Environ Pollut 219:1036–1043

    CAS  Google Scholar 

  • Ye L, Huang M, Zhong B, Wang X, Tu Q, Sun H, Wang C, Wu L, Chang M (2017) Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region (China): characteristics, ecological risk assessment, and source apportionment. J Environ Sci 70:106–123

    Google Scholar 

  • Ye L, Huang M, Zhong B, Wang X, Tu Q, Sun H, Wang C, Wu L, Chang M (2018) Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region (China): characteristics, ecological risk assessment, and source apportionment. J Environ Sci 70:106–123

    Google Scholar 

  • Yin W, Hou J, Xu T, Cheng J, Wang X, Jiao S, Wang L, Huang C, Zhang Y, Yuan J (2017) Association of individual-level concentrations and human respiratory tract deposited doses of fine particulate matter with alternation in blood pressure. Environ Pollut 230:621–631

    CAS  Google Scholar 

  • Zaborska A, Beszczyńska-Möller A, Włodarska-Kowalczuk M (2017) History of heavy metal accumulation in the Svalbard area: distribution, origin and transport pathways. Environ Pollut 231:437–450

    CAS  Google Scholar 

  • Zereini F, Alt F, Messerschmidt J, Wiseman C, Feldmann I, von Bohlen A, Muller J, Liebl K, Puttmann W (2005) Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany. Environ Sci Technol 39:2983–2989

    CAS  Google Scholar 

  • Zhang Y, Ji X, Ku T, Li G, Sang N (2016) Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: a study based on myocardial toxicity. Environ Pollut 216:380–390

    CAS  Google Scholar 

  • Zhang T, Bai Y, Hong X, Sun L, Liu Y (2017) Particulate matter and heavy metal deposition on the leaves of Euonymus japonicus during the East Asian monsoon in Beijing, China. PLoS One 12:e0179840

    Google Scholar 

  • Zhang K, Chai F, Zheng Z, Yang Q, Zhong X, Fomba KW, Zhou G (2018a) Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area. J Environ Sci 71:188–196

    Google Scholar 

  • Zhang Z, Chan T-C, Guo C, Chang L-Y, Lin C, Chuang YC, Jiang WK, Ho KF, Tam T, Woo KS (2018b) Long-term exposure to ambient particulate matter (PM 2.5) is associated with platelet counts in adults. Environ Pollut 240:432–439

    CAS  Google Scholar 

  • Zheng N, Liu J, Wang Q, Liang Z (2010) Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci Total Environ 408:726–733

    CAS  Google Scholar 

  • Zhu J, Wang Q, Yu H, Li M, He N (2016a) Heavy metal deposition through rainfall in Chinese natural terrestrial ecosystems: evidences from national-scale network monitoring. Chemosphere 164:128–133. https://doi.org/10.1016/j.chemosphere.2016.08.105

    Article  CAS  Google Scholar 

  • Zhu J, Wang Q, Yu H, Li M, He N (2016b) Heavy metal deposition through rainfall in Chinese natural terrestrial ecosystems: evidences from national-scale network monitoring. Chemosphere 164:128–133

    CAS  Google Scholar 

  • Zia Z, Bakhat HF, Saqib ZA, Shah GM, Fahad S, Ashraf MR, Hammad HM, Naseem W, Shahid M (2017) Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicol Environ Saf 144:11–18

    CAS  Google Scholar 

  • Zufall MJ, Dai W, Davidson CI (1999) Dry deposition of particles to wave surfaces: II. Wind tunnel experiments. Atmos Environ 33:4283–4290

    CAS  Google Scholar 

Download references

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Shahid or Camille Dumat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahid, M. et al. (2019). Ecotoxicology of Heavy Metal(loid)-Enriched Particulate Matter: Foliar Accumulation by Plants and Health Impacts. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 253. Reviews of Environmental Contamination and Toxicology, vol 253. Springer, Cham. https://doi.org/10.1007/398_2019_38

Download citation

Publish with us

Policies and ethics