Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 6))

Conclusions

Little is known about the function of the methanogenic archaea in the guts of arthropods, besides their role in lowering the H2 partial pressure by producing methane. This lowering of the H2 partial pressure might have similar consequences for the fermentation patterns of the gut microbiota similar to the situation known from mammalian guts and rumen (Hobson 1988). In addition, it may be speculated as to whether intestinal methanogens can contribute also to the nitrogen-carbon balance in the hindgut by the fixation of atmospheric nitrogen, since methanogenic archaea possess the whole set of genes required for nitrogen fixation (Raymond et al. 2004). Recently, it has been shown that the detrivorous and humivorous insects or their larvae have a much greater importance in the mineralization of organic compounds and the supplementation of soil with nitrogen than anticipated by earlier investigators (Nardi et al. 2002; Lemke et al. 2003; Ndiaye et al. 2004; Zhang and Brune 2004). Thus, the role of methanogenic arthropods exceeds their role as methane-emitters and potential contributors to global warming. Future studies will provide further information about their complex role in terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann R, Ludwig W (2000) Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24:555–565

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Beckmann M, Lloyd D (2001) Mass spectrometric monitoring of gases (CO2, CH4, O2) in a mesotrophic peat core from Kopparas Mire, Sweden. Glob Change Biol 7:171–180

    Article  Google Scholar 

  • Bijnen FGC, Harren FJM, Hackstein JHP, Reuss J (1996) Intracavity CO laser photoacoustic trace gas detection: Cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles. Appl Optics 35:5357–5368

    CAS  Google Scholar 

  • Boschetti, A., Biasioli, F., van Opbergen, M., Warneke, C., Jordan, A., Holzinger, R., Prazeller, P., Karl, T., Hansel, A., Lindinger, W., and Ianotta, S. (1999) PTR-MSreal time monitoring of the emission of volatile organic compounds during postharvest aging of berryfruit. Postharvest Biol Technol 17:143–151

    Article  CAS  Google Scholar 

  • Brauman A, Dore J, Eggelton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communties in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    PubMed  CAS  Google Scholar 

  • Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343

    Article  PubMed  CAS  Google Scholar 

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  • Brune A, Emerson D, Breznak J (1995) The termite gut microflora as an oxygen sink — microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    CAS  Google Scholar 

  • Brune A, Friedrich MW (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    Article  PubMed  CAS  Google Scholar 

  • Buchner P (1953) Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Verlag Birkhäuser, Basel/Stuttgart (english translation: Endosymbiosis of animals with plant microorganisms, Interscience, New York, 1965)

    Google Scholar 

  • Canback B, Tamas I, Andersson SGE (2004) A phylogenomic study of endosymbiotic bacteria. Mol Biol Evol 21:1110–1122

    PubMed  Google Scholar 

  • Cazemier AE, Hackstein JHP, op den Camp HLM, Rosenberg J, van der Drift C (1997) Bacteria in the intestinal tract of different species of arthropods. Microb Ecol 33:189–197

    Article  PubMed  Google Scholar 

  • Chynoweth DP (1996) Environmental impact of biomethanogenesis. Environ Monit Assess 42:3–18

    Article  CAS  Google Scholar 

  • Crutzen PJ, Aselmann I, Seiler W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna and humans. Tellus 38B:271–284

    CAS  Google Scholar 

  • Dettner K, Peters W (2003) Lehrbuch der Entomologie. Gustav Fischer, Stuttgart. 2. Auflage

    Google Scholar 

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  PubMed  CAS  Google Scholar 

  • Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754

    PubMed  CAS  Google Scholar 

  • Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892

    Article  PubMed  CAS  Google Scholar 

  • Dyal PL, Hope S, Roberts DM, Embley TM (1995) Use of the PCR and fluorescent-probes to recover SSU ribosomal-RNA gene-sequences from single cells of the ciliate protozoan Spathidium. Mol Ecol 4:499–503

    PubMed  CAS  Google Scholar 

  • Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata. Appl Environ Microbiol 69:6659–6668

    PubMed  CAS  Google Scholar 

  • Embley TM, Finlay BJ, Brown S (1992a) RNA sequence-analysis shows that the symbionts in the ciliate Metopus contortus are polymorphs of a single methanogen species. FEMS Microbiol Lett 97:57–61

    Article  CAS  Google Scholar 

  • Embley TM, Finlay BJ, Thomas RH, Dyal, PL (1992b) The use of ribosomal-RNA sequences and fluorescent-probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol 138:1479–1487

    PubMed  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1992) Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol 157:475–480

    CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford, New York, Tokyo

    Google Scholar 

  • Ferry JG (1993) Methanogenesis, Ecology, Physiology, Biochemistry, and Genetics. Chapman and Hall, New York, London

    Google Scholar 

  • Ferry JG (1997) Methane: small molecule, big impact. Science 278:1413–1414

    Article  PubMed  CAS  Google Scholar 

  • Ferry JG (1999) Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev 23:13–38

    Article  PubMed  CAS  Google Scholar 

  • Fraser PJ, Rasmussen RA, Creffield JW, French JR, Khalil MAK (1986) Termites and global methane — another assessment. J Atmospheric Chem 4:295–310

    CAS  Google Scholar 

  • Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognatus. Appl Environ Microbiol 67:4880–4890

    PubMed  CAS  Google Scholar 

  • Fröhlich J, König H (1999) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. System Appl Microbiol 22:249–257

    Google Scholar 

  • Hackstein, JHP (1997) Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations. Antonie van Leeuwenhoek 72:63–76

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, Stumm CK (1994) Methane production in terrestrial arthropods. Proc Natl Acad Sci USA 91:5441–5445

    PubMed  CAS  Google Scholar 

  • Hackstein JHP, van Alen TA (1996) Fecal methanogens and vertebrate evolution. Evolution 50:559–572

    Google Scholar 

  • Hackstein JHP, van Alen TA, op den Camp H, Smits A, Mariman E (1995) Intestinal methanogenesis in primates — a genetic and evolutionary approach. Dtsch tierärtztl Wschr 102/4:152–154

    Google Scholar 

  • Hackstein JHP, Langer P, Rosenberg J (1996) Genetic and evolutionary constraints for the symbiosis between animals and methanogenic bacteria. Environ Monit Assess 42:39–56

    Article  CAS  Google Scholar 

  • Hackstein JHP, van Hoek AHAM, Sprenger WW, Rosenberg J (1998) Symbiotic associations between methanogenic archaea, protists and metazoa: evolutionary implications. In: Enigmatic Microorganisms and Life in Extreme Environments. J. Seckbach, (Ed.). Kluwer Academic Publishers, Doordrecht, The Netherlands. Pp. 599–611

    Google Scholar 

  • Hackstein JHP, Brune A, Warneke C, de Gouw J (2000) Methanol and hydrogen are important metabolites in the metabolism of cockroaches and rose chafers. Bonn, 17.6.2000 DZG satellite meeting (abstract)

    Google Scholar 

  • Hackstein JHP, van Hoek AHAM, Leunissen JAM, Huynen M (2002) Anaerobic ciliates and their methanogenic endosymbionts. In: Symbiosis: mechanisms and model systems (ed Seckbach J), pp 451–464. Kluwer Academic Publishers, Doordrecht, The Netherlands.

    Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lacis A, Oinas V (2000) Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci USA 97:9875–9880

    PubMed  CAS  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2002) Global warming continues. Science 295(5553):275–275

    Article  PubMed  CAS  Google Scholar 

  • Hobson PN (1988) The rumen microbial ecosystem. Elsevier Applied Science. London, New York

    Google Scholar 

  • Hofmeister M, Martin W (2003) Interspecific evolution: microbial symbiosis, endosymbiosis and gene transfer. Env Microbiol 5(8):641–649

    Google Scholar 

  • Khalil MAK, Shearer MJ (1993) Sources of methane: an overview. In: Atmosphericmethane: sources, sinks, and role in global change (ed Khalil MAK), pp. 180–198. Springer Verlag, Heidelberg, Berlin, Germany.

    Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62(10):3620–3631

    PubMed  CAS  Google Scholar 

  • Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169(4):287–292

    Article  PubMed  CAS  Google Scholar 

  • Lemke T, van Alen T, Hackstein JHP, Brune A (2001): Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches. Appl Environ Microbiol 67:4657–4661

    Article  PubMed  CAS  Google Scholar 

  • Lemke T, Stingl U, Egert M, Friedrich MW, Brune A (2003) Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera; Scarabaeidae). Appl Environ Microbiol 69:6650–6658

    Article  PubMed  CAS  Google Scholar 

  • McFall-Ngai MJ (2002) Unseen forces: the influence of bacteria on animal development. Dev Biol 242:1–14

    Article  PubMed  CAS  Google Scholar 

  • Moran NA (2003) Tracing the evolution of gene loss in obligate bacterial symbionts. Curr Opin Microbiol 6:512–518

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Baumann P (2000) Bacterial endosymbionts in animals. Curr Opin Microbiol 3:270–275

    Article  PubMed  CAS  Google Scholar 

  • Nardi JB, Mackie RI, Dawson JO (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Insect Physiol 48:751–763

    Article  PubMed  CAS  Google Scholar 

  • Ndiaye D, Lensi R, Lepage M, Brauman A (2004) The effect of the soil-feeding termite Cubitermes niokoloensis on soil microbial activity in a semi-arid savanna in West Africa. Plant Soil 259(1-2):277–286

    CAS  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    PubMed  CAS  Google Scholar 

  • Regensbogenova M, Pristas P, Javorsky P, Moon-van der Staay SY, van der Staay GWM, Hackstein JHP, Newbold CJ, McEwan NR (2004a) Assessment of Ciliates in the Sheep Rumen by DGGE. Lett Appl Microbiol 39:144–147

    Article  PubMed  CAS  Google Scholar 

  • Regensbogenova M, McEwan N, Javorsky P, Pristas P, Kisidayova S, Michalowski T, Newbold CJ, Hackstein JHP (2004b) A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol Lett in press

    Google Scholar 

  • Sawayama S, Tada C, Tsukahara K, Yagishita T (2004) Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J Biosci Bioeng 97(1):65–70

    PubMed  CAS  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003a) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6007–6017

    PubMed  CAS  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003b) Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6018–6024

    PubMed  CAS  Google Scholar 

  • Shima S, Warkentin E, Thauer RK, Ermler U (2002) Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J Biosci Bioeng 93:519–530

    PubMed  CAS  Google Scholar 

  • Sprenger WW, van Belzen MC, Rosenberg J, Hackstein JHP, Keltjens JT (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a methanol-and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50:1989–1999

    PubMed  CAS  Google Scholar 

  • Tang YQ, Shigematsu T, Ikbal, Morimura S, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38:2537–2550

    PubMed  CAS  Google Scholar 

  • Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240

    PubMed  CAS  Google Scholar 

  • Van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95

    Article  Google Scholar 

  • Van Hoek AHAM, van Alen TA, Sprakel VSI, Hackstein JHP, Vogels GD (1998) Evolution of anaerobic ciliates from the gastrointestinal tract: phylogenetic analysis of the ribosomal repeat from Nyctotherus ovalis and its relatives. Mol Biol Evol 15:1195–1206

    PubMed  Google Scholar 

  • Van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258

    PubMed  Google Scholar 

  • Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms — proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87(12):4576–4579

    PubMed  CAS  Google Scholar 

  • Wright ADG, Pimm C (2003) Improved strategy for presumptive identification of methogens using 16S ribotyping. J Microbiol Methods 55(2):337–349

    Article  PubMed  CAS  Google Scholar 

  • Zhang HY, Brune A (2004) Characterization and partial purification of proteinases from the highly alkaline midgut of the humivorous larvae of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Soil Biol Biochem 36:435–442

    Article  CAS  Google Scholar 

  • Zwart KB, Goosen NK, van Schijndel MW, Broers CAM, Stumm CK, Vogels GD (1988) Cytochemical-localization of hydrogenase activity in the anaerobic protozoa Trichomonas vaginalis, Plagiopyla nasuta and Trimyema compressum. J Gen Microbiol 134:2165–2170

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hackstein, J.H.P., van Alen, T.A., Rosenberg, J. (2006). Methane Production by Terrestrial Arthropods. In: König, H., Varma, A. (eds) Intestinal Microorganisms of Termites and Other Invertebrates. Soil Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28185-1_7

Download citation

Publish with us

Policies and ethics