Skip to main content

Action and Interaction in the Mycorrhizal Hyphosphere — a Re-evaluation of the Role of Mycorrhizas in Nutrient Acquisition and Plant Ecology

  • Chapter
Nutrient Acquisition by Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 181))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuarghub SM, Read DJ (1988) The biology of mycorrhiza in the Ericaceae. XII. Quantitative analysis of individual free amino acids in relation to time and depth in the soil profile. New Phytol 108:433–441

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1986a) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481–493

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1986b) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytol 103:507–514

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1989a) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula L.) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol 112:61–68

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1989b) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula Roth.) infected with different mycorrhizal fungi. New Phytol 112:55–60

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Finlay RD, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilization of protein by mycorrhizal plants of Pinus contorta. New Phytol 103:495–506

    Article  CAS  Google Scholar 

  • Ahonen-Jonnarth U, Van Hees PAW, Lundström US, Finlay RD (2000) Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings exposed to elevated concentrations of aluminium and heavy metals. New Phytol 146:557–567

    Article  CAS  Google Scholar 

  • Ahonen-Jonnarth U, Göransson A, Finlay RD (2000) Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings treated with elevated Al concentrations. Tree Physiol 23:157–167

    Google Scholar 

  • Ames RN, Reid CPP, Porter L, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396

    Article  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Andrade G, Linderman RG, Bethlenfalvay GJ (1998a) Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202:79–87

    Article  CAS  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998b) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96

    Article  CAS  Google Scholar 

  • Arnebrant K (1994) Nitrogen amendments reduce the growth of extramatrical mycelium. Mycorrhiza 5:7–15

    Article  CAS  Google Scholar 

  • Arnebrant K, Ek H, Finlay RD, Söderström B ( (1993) Translocation of nitrogen between Alnus glutinosa seedlings inoculated with Frankia sp. and Pinus contorta seedlings connected by a common ectomycorrhizal fungus. New Phytol 124:231–242

    Article  Google Scholar 

  • Arocena JM, Glowa KR, Massicotte HB, Lavkulich L (1999) Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the Ae horizon of a luvisol. Can J Soil Sci 79:25–35

    CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bajwa R, Read DJ (1985) The biology of mycorrhiza in the Ericaceae. IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol 101:459–467

    Article  CAS  Google Scholar 

  • Bajwa R, Read DJ (1986) Utilisation of mineral and amino N sources by the ericoid mycorrhizal endophyte Hymenoscyphus ericae and by mycorrhizal and non-mycorrhizal seedlings of Vaccinium. Trans Br Mycol Soc 87:269–277

    CAS  Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96:3404–3411

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    PubMed  CAS  Google Scholar 

  • Barron GL (1988) Microcolonies of bacteria as a nutrient source for lignicolous and other fungi. Can J Bot 66:2505–2510

    Article  Google Scholar 

  • Bending GD, Read DJ (1995a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1995b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytol 130:411–417

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348–1354

    Article  CAS  Google Scholar 

  • Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 223–263

    Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509

    Article  PubMed  CAS  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and non-mycorrhizal carrot roots. Mol Plant-Microbe Interact 14:255–260

    PubMed  CAS  Google Scholar 

  • Biró B, Köves-Péchy K, Vörös I, Takács T, Eggenberger P, Strasser RJ (2000) Interrelatio between Azospirillum and Rhizobium nitrogen fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile AMF-free or normal conditions. Appl Soil Ecol 15:159–168

    Article  Google Scholar 

  • Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542

    Article  Google Scholar 

  • Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126

    Article  Google Scholar 

  • Boyd R, Furbank RT, Read DJ (1986) Ectomycorrhiza and water relations of trees. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 689–693

    Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91:197–201

    Article  CAS  Google Scholar 

  • Brandes B, Godbold DL, Kuhn AJ, Jentschke G (1998) Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. New Phytol 140:735–743

    Article  CAS  Google Scholar 

  • Bruce A, Smith SE, Tester M (1994) The development of mycorrhizal infection in cucumber: effects of P supply on root growth, formation of entry points and growth of infection units. New Phytol 127:507–514

    Article  Google Scholar 

  • Cairney JWG, Burke RM (1994) Fungal enzymes degrading plant cell walls: their possible significance in the ectomycorrhizal symbiosis. Mycol Res 98:1345–1356

    CAS  Google Scholar 

  • Cairney JWG, Burke RM (1998) Do ecto-and ericoid mycorrhizal fungi produce peroxidase activity? Mycorrhiza 8:61–65

    Article  CAS  Google Scholar 

  • Cairney JWG, Chambers SM (eds) (1999) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cairney JWG, Taylor AFS, Burke RM (2003) No evidence for lignin peroxidase genes in ectomycorrhizal fungi. New Phytol 160:461–462

    Article  Google Scholar 

  • Callot G, Maurette M, Pottier L, Dubois A (1987) Biogenic etching of microfeatures in amorphous and crystalline silicates. Nature 328:147–149

    Article  CAS  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44

    PubMed  CAS  Google Scholar 

  • Chalot M, Brun A, Finlay RD, Söderström B (1994a) Metabolism of [14C]glutamate and [14C]glutamine by the ectomycorrhizal fungus Paxillus involutus. Microbiology 140:1641–1649

    Article  CAS  Google Scholar 

  • Chalot M, Brun A, Finlay RD, Söderström B (1994b) Respiration of [14C] alanine by the ectomycorrhizal fungus Paxillus involutus. FEMS Microbiol Lett 121:87–92

    PubMed  CAS  Google Scholar 

  • Chalot M, Kytöviita MM, Finlay RD, Söderström B (1995a) Factors affecting amino acid uptake in the ectomycorrhizal fungus Paxillus involutus. Mycol Res 99:1131–1138

    CAS  Google Scholar 

  • Chalot M, Finlay RD, Ek H, Söderström B (1995b) Metabolism of [15N] alanine by the ectomycorrhizal fungus Paxillus involutus. Exp Mycol 19:297–304

    Article  CAS  Google Scholar 

  • Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Bacillus strain. Can J Bot 69:507–511

    CAS  Google Scholar 

  • Chen DM, Taylor AFS, Burke RM, Cairney JWG (2001) Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi using PCR. New Phytol 152:151–158

    Article  CAS  Google Scholar 

  • Colpaert JV, Van Assche JA (1987) Heavy metal tolerance in some ectomycorrhizal fungi. Funct Ecol 1:415–421

    Google Scholar 

  • Colpaert JV, Van Assche JA (1992) The effects of cadmium and the cadmium-zinc interaction on the axenic growth of ectomycorrhizal fungi. Plant Soil 145:237–243

    CAS  Google Scholar 

  • Colpaert JV, Verstuyft I (1999) The Ingestad concept in ectomycorrhizal research: possibilities and limitations. Physiol Plant 105:233–238

    Article  CAS  Google Scholar 

  • Colpaert JV, van Laere A, van Assche JA (1996) Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol 16:787–793

    PubMed  CAS  Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81:43–52

    Article  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Cromack K Jr, Sollins P, Graustein WC, Speidel K, Todd AW, Spycher G, Li CY, Todd RL (1979) Calcium oxalate accumulations and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468

    Article  CAS  Google Scholar 

  • Dalpé Y (1986) Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifolium Ait. by Oidiodendron species. New Phytol 103:391–396

    Article  Google Scholar 

  • Daniell TJ, Hodge A, Young JPW, Fitter AH (1999) How many fungi does it take to change a plant community? Trends Plant Sci 4:81–82

    Article  Google Scholar 

  • Davis RM, Menge JA (1980) Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus. Phytopathology 70:447–452

    CAS  Google Scholar 

  • Dighton J, Thomas ED, Latter PM (1987) Interactions between tree roots, mycorrhizas, a saprotrophic fungus and the decomposition of organic substrates in a microcosm. Biol Fertil Soil 4:145–150

    Article  Google Scholar 

  • Donnelly PK, Entry JA, Crawford DL (1993) Degradation of Atrazine and 2.4-dichlorophenoxyacetic acid by mycorrhizal fungi at 3 nitrogen concentrations invitro. Appl Environ Microbiol 59:2642–2647

    PubMed  CAS  Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1987) The accumulation of plant-produced antimicrobial compounds in response to ectomycorrhizal fungi: a review. Phytoprotection 68:17–27

    CAS  Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1988a) Interaction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can J Bot 66:558–562

    Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1988b) Pine root exudate stimulates antibiotic synthesis by the ectomycorrhizal fungus Paxillus involutus. New Phytol 108:471–476

    Article  CAS  Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1989) The time course of disease suppression by the ectomycorrhizal fungus Paxillus involutus. New Phytol 111:693–698

    Article  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834–836

    Article  Google Scholar 

  • Entry JA, Donnelly PK, Cromack K (1991) Influence of ectomycorrhizal mat soils on lignin and cellulose degradation. Biol Fertil Soils 11:75–78

    Article  CAS  Google Scholar 

  • Entry JA, Rose CL, Cromack K (1992) Microbial biomass and nutrient concentrations in hyphal mats of the ectomycorrhizal fungus Hysterangium setchellii in a coniferous forest soil. Soil Biol Biochem 24:447–453

    Article  Google Scholar 

  • Erland SE, Finlay RD (1992) Effects of temperature and incubation time on the ability of three ectomycorrhizal fungi to colonize P. sylvestris roots. Mycol Res 96:270–272

    Google Scholar 

  • Finlay RD (1985) Interactions between soil micro-arthropods and endomycorrhizal associations of higher plants. In: Fitter AH (ed) Ecological interactions in soil: plants, microbes and animals. Blackwell, Oxford, pp 319–331

    Google Scholar 

  • Finlay RD (1989) Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cavipes. New Phytol 112:185–192

    Article  CAS  Google Scholar 

  • Finlay RD (1993) Uptake and mycelial translocation of nutrients by ectomycorrhizal fungi. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhiza in ecosystems. Proc 3rd Eur Symp Mycorrhizas. CAB International, Wallingford, pp 91–97

    Google Scholar 

  • Finlay RD (1995) Interactions between soil acidification, plant growth and nutrient uptake in ectomycorrhizal associations of forest trees. Ecol Bull 44:197–214

    CAS  Google Scholar 

  • Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103:143–156

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting plants. New Phytol 103:157–165

    Article  Google Scholar 

  • Finlay R, Söderström B (1992) Mycorrhiza and carbon flow to the soil. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York

    Google Scholar 

  • Finlay RD, Ek H, Odham G, Söderström B (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110:59–66

    Article  Google Scholar 

  • Finlay RD, Ek H, Odham G, Söderström B (1989) Uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium and nitrate sources by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytol 113:47–55

    Article  CAS  Google Scholar 

  • Finlay RD, Frostegård Å, Sonnerfeldt A-M (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120:105–115

    Article  Google Scholar 

  • Fitter AH (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 79:119–125

    Article  CAS  Google Scholar 

  • Fitter AH (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol 99:257–265

    Article  Google Scholar 

  • Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Google Scholar 

  • Fitter AH, Moyerson B (1996) Evolutionary trends in root-microbe symbioses. Philos Trans R Soc Lond Ser B 351:1367–1375

    Google Scholar 

  • Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147:179–187

    Article  CAS  Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307:53–56

    Article  CAS  Google Scholar 

  • Frank AB (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145

    Google Scholar 

  • Frank AB (1894) Die Bedeutung der Mykorrhizapilze für die gemeine Kiefer. Forstwissen Centralbl 16:1852–1890

    Google Scholar 

  • Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic finger-printing of fluorescent pseudomonads associated with the Douglas fir Laccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860

    PubMed  CAS  Google Scholar 

  • Frey-Klett P, Pierrat J-C, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during the establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas Fir. Appl Environ Microbiol 63:139–144

    PubMed  CAS  Google Scholar 

  • Frey-Klett P, Churin J-L, Pierrat J-C, Garbaye J (1999) Dose effect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhizal helper bacterium in two forest nurseries. Appl Environ Microbiol 63:139–144

    Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    PubMed  CAS  Google Scholar 

  • Gadd GM (ed) (2005) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge

    Google Scholar 

  • Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133

    Article  PubMed  CAS  Google Scholar 

  • Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47:370–375

    Article  Google Scholar 

  • Garbaye J (1994) Helper bacteria — a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Garbaye J, Bowen GD (1989) Stimulation of ectomycorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112:383–388

    Article  Google Scholar 

  • Garcia-Garrido JM, Garcia-Romera I, Ocampo JA (1992) Cellulase production by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nichol. and Gerd.) Gerd. and Trappe. New Phytol 121:221–226

    Article  CAS  Google Scholar 

  • Gay G, Normand L, Marmeisse R, Sotta B, Debaud JC (1994) Auxin overproducer mutants of Hebeloma cylindrosporum Romagnesi have increased mycorrhizal activity. New Phytol 128:645–657

    Article  CAS  Google Scholar 

  • Genney DR, Alexander IJ, Killham K, Mehang AA (2004) Degradation of the polycyclic aromatic hydrocarbon (PAH) fluorene is retarded in a Scots pine ectomycorrhizosphere. New Phytol 163:641–649

    Article  CAS  Google Scholar 

  • Gorissen A, Kuyper ThW (2000) Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated [CO2]. New Phytol 146:163–168

    Article  CAS  Google Scholar 

  • Graustein WC, Cromack K Jr, Sollins P (1977) Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science 198:1252–1254

    CAS  PubMed  Google Scholar 

  • Grayston SJ, Campbell CD, Vaughan D (1994) Microbial diversity in the rhizospheres of different tree species. In: Pankhurst CE (ed) Soil biota: management in sustainable farming systems. CSIRO, Adelaide

    Google Scholar 

  • Griffiths RP, Caldwell BA (1992) Mycorrhizal mat communities in forest soils. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhiza in ecosystems. Proc 3rd Eur Symp Mycorrhizas. CAB International, Wallingford, pp 98–105

    Google Scholar 

  • Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol Biochem 26:331–337

    Article  CAS  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422

    Article  Google Scholar 

  • Haselwandter K, Winkelmann G (1998) Identification and characterisation of siderophores of mycorrhizal fungi. In: Varma A (ed) Mycorrhiza manual. Springer, Berlin Heidelberg New York, pp 243–254

    Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153:352–354

    Article  CAS  Google Scholar 

  • Hawkins H-J, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Heinonsalo J, Jorgensen KS, Sen R (2001) Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community growth and bacterial carbon utilization profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbiol Ecol 36:73–84

    PubMed  CAS  Google Scholar 

  • Hibbett DS, Gilbert L-B, Donaghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508

    Article  PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirtsch Ges Berlin 98:59–78

    Google Scholar 

  • Hirsch P, Eckhardt FEW, Palmer RJ (1995) Fungi active in weathering of rock and stone monuments. Can J Bot 73:S1384–S1390

    Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Högberg P, Plamboeck AH, Taylor AFS, Fransson PMA (1999) Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proc Natl Acad Sci USA 96:8534–8539

    Article  PubMed  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Holmström SJM, Lundström US, Finlay RD, van Hees PAW (2004) Siderophores in forest soil solution. Biogeochemistry 71:247–258

    Article  Google Scholar 

  • Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth — non-nutritional effects and interactions with mycorrhizae. Biol Fertil Soils 20:263–269

    Article  Google Scholar 

  • Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Becker JS, Godbold DL (2000) The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant Soil 220:243–246

    Article  CAS  Google Scholar 

  • Johansen A, Finlay RD, Olsson P-A (1996) N assimilation in the external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 133:705–712

    Article  CAS  Google Scholar 

  • Johansson J, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–12

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In-situ 13CO2 pulse-labelling of upland grassland demonstrates that a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334

    Article  CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere — a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jongmans AG, van Breemen N, Lundström U, Finlay RD, van Hees PAW, Giesler R, Melkerud P-A, Olsson M, Srinivasan M, Unestam T (1997) Rock-eating fungi: a true case of mineral plant nutrition? Nature 389:682–683

    Article  CAS  Google Scholar 

  • Karabaghli C, Frey-Klett P, Sotta B, Bonnet M, Le Tacon F (1998) In vitro effects of Laccaria bicolor S238 N and Pseudomonas fluorescens strain BBc6 on rooting of de-rooted shoot hypocotyls of Norway spruce. Tree Physiol 18:103–111

    PubMed  Google Scholar 

  • Kerley SJ, Read DJ (1995) The biology of mycorrhiza in the Ericaceae. XVIII. Chitin degradation by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host plant. New Phytol 131:369–375

    Article  CAS  Google Scholar 

  • Kerley SJ, Read DJ (1997) The biology of mycorrhiza in the Ericaceae. XIX. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host plants. New Phytol 136:691–701

    Article  Google Scholar 

  • Kerley SJ, Read DJ (1998) The biology of mycorrhiza in the Ericaceae. XX. Plant and mycorrhizal necromass as nitrogenous substrates for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host. New Phytol 139:353–360

    Article  Google Scholar 

  • Klironomos JN, Hart MM (2001) Food-web dynamics — animal nitrogen swap for plant carbon. Nature 410:651–652

    Article  PubMed  CAS  Google Scholar 

  • Klironomos JN, Bednarczuk EM, Neville J (1999) Reproductive significance of saprobic and arbuscular mycorrhizal fungi by the collembolan, Folsomia candida. Funct Ecol 13:756–761

    Article  Google Scholar 

  • Koide R, Shumway DL, Mabon SA (1994) Mycorrhizal fungi and reproduction of field populations of Abutilon theophrasti Medic. (Malvaceae). New Phytol 126:123–130

    Article  Google Scholar 

  • Kope HH, Fortin JA (1989) Inhibition of phytopathogenic fungi in vitro by cell free culture media of ectomycorrhizal fungi. New Phytol 113:57–63

    Article  Google Scholar 

  • Kozdrój J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417

    Article  Google Scholar 

  • Lamhamedi MS, Bernier PY, Fortin JA (1992) Hydraulic conductance and soil water potential at the soil root interface of Pinus pinaster seedlings inoculated with different dikaryons of Pisolithus sp. Tree Physiol 10:231–244

    PubMed  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  PubMed  Google Scholar 

  • Lapeyrie F, Chilvers GA, Bhem CA (1987) Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch ex Fr.) Fr. New Phytol 106:139–146

    Article  CAS  Google Scholar 

  • Lapeyrie F, Raager J, Vairelles D (1991) Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69:342–346

    CAS  Google Scholar 

  • Larsen J, Jakobsen I (1996) Effects of a mycophagous Collembola on the symbioses between Trifolium subterraneum and three arbuscular mycorrhizal fungi. New Phytol 133:295–302

    Article  Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (“saprophytic”) plants. Tansley Review no 69. New Phytol 127:171–216

    Article  Google Scholar 

  • Leake JR, Read DJ (1990a) Proteinase activity in mycorrhizal fungi. I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol 115:243–250

    Article  CAS  Google Scholar 

  • Leake JR, Read DJ (1990b) Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res 94:993–995

    CAS  Google Scholar 

  • Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial habitats. In: Wicklow DT, Söderström B (eds) The Mycota. IV. Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 281–301

    Google Scholar 

  • Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiol 21:71–82

    PubMed  CAS  Google Scholar 

  • Leake JR, McKendrick SL, Bidartondo M, Read DJ (2004) Symbiotic germination and development of the myco-heterotroph Monotropa hypopitys in nature and its requirement for locally distributed Tricholoma spp. New Phytol 163:405–423

    Article  Google Scholar 

  • Leyval C, Berthelin J (1989) Interactions between Laccaria laccata-Agrobacterium radiobacter and beech roots influence on phosphorus, potassium, magnesium and iron mobilisation from minerals and plant growth. Plant Soil 117:103–110

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55:1009–1016

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1993) Rhirodeposition and net release of soluble organic-compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol Fertil Soil 15:259–267

    Article  CAS  Google Scholar 

  • Li CY, Massicotte HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. Associated with Douglas-fir tuberculate ectomycorrhizae. Plant Soil 140:35–40

    Article  CAS  Google Scholar 

  • Lindahl B, Stenlid J, Olsson S, Finlay R (1999) Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144:183–193

    Article  CAS  Google Scholar 

  • Lindahl B, Stenlid J, Finlay RD (2001) Effects of resource availability on mycelial interactions and 32P transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiol Ecol 38:43–52

    CAS  Google Scholar 

  • Lindahl B, Taylor AFS, Finlay RD (2002) Defining nutritional constraints on carbon cycling — towards a less “phytocentric” perspective. Plant Soil 242:123–135

    Article  CAS  Google Scholar 

  • Lindahl BD, Taylor AFS (2004) Occurrence of N-acetylhexosaminidase-encoding genes in ectomycorrhizal basidiomycetes. New Phytol 164:193–199

    Article  CAS  Google Scholar 

  • Lindahl BD, Finlay RD, Cairney JWG (2005) Enzymatic activities of mycelia in mycorrhizal fungal communities. In: Dighton J, Oudemans P, White J (eds) The fungal community: its organization and role in the ecosystem. Marcel Dekker, New York, pp 331–348

    Google Scholar 

  • Mahmood S, Finlay RD, Erland S, Wallander H (2001) Solubilisation and colonisation of wood ash by ecto-mycorrhizal fungi isolated from a wood ash fertilised spruce forest. FEMS Microbiol Ecol 35:151–161

    PubMed  CAS  Google Scholar 

  • Marschner P, Crowley DE, Higashi RM (1997) Root exudation and physiological status of a root colonizing fluorescent pseudomonad in mycorrhizal and nonmycorrhizal pepper (Capsicum annum L.). Plant Soil 189:11–20

    Article  CAS  Google Scholar 

  • Martin F (2001) Frontiers in molecular mycorrhizal research — genes, loci, dots and spins. New Phytol 150:499–507

    Article  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Marx DH (1972) Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu Rev Phytopathol 10:429–454

    Article  PubMed  CAS  Google Scholar 

  • McAfee BJ, Fortin JA (1986) Competitive interactions of ectomycorrhizal mycobionts under field conditions. Can J Bot 64:848–852

    Google Scholar 

  • McGonigle TP (1995) The significance of grazing on fungi in nutrient cycling. Can J Bot 73:1370–1376

    Google Scholar 

  • McKendrick SL, Leake J, Taylor DL, Read DR (2000a) Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytol 145:523–537

    Article  Google Scholar 

  • McKendrick SL, Leake J, Read DR (2000b) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Article  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Ectomycorrhizas — extending the capabilities of rhizosphere remediation? Soil Biol Biochem 32:1475–1484

    Article  CAS  Google Scholar 

  • Meharg AA, Cairney JWG, Maguire N (1997a) Mineralisation of 2,4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere 34:2495–2504

    Article  CAS  Google Scholar 

  • Meharg AA, Dennis GR, Cairney JWG (1997b) Biotransformation of 2,4,6-trinitrotoluene (TNT) by ectomycorrhizal basidiomycetes. Chemosphere 35:513–521

    Article  CAS  Google Scholar 

  • Melin E, Nilsson H (1950) Transfer of radioactive phosphorus to pine seedlings by means of mycorrhizal hyphae. Physiol Plant 3:88–92

    Article  Google Scholar 

  • Melin E, Nilsson H (1953) Transfer of labelled nitrogen from glutamic acid to pine seedlings through the mycelium of Boletus variegatus. Nature 171:134

    PubMed  CAS  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732

    Article  PubMed  CAS  Google Scholar 

  • Mogge B, Loferer C, Hutzler P, Hartman A (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. Ectomycorhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–278

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical applications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London

    Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:477–491

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  Google Scholar 

  • Nicolson TH (1959) Mycorrhiza in the Graminae. I. Vesicular-arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42:421–438

    Article  Google Scholar 

  • Nicolson TH (1975) Evolution of vesicular-arbuscular mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 25–34

    Google Scholar 

  • Nurmiaho-Lassila EL, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Microbiol 43:1017–1035

    Article  CAS  Google Scholar 

  • Ochs M (1996) Influence of humified and non-humified natural organic compounds on mineral dissolution. Chem Geol 132:119–124

    Article  CAS  Google Scholar 

  • Olsson PA, Wallander H (1998) Interactions between ectomycorrhizal fungi and the bacterial community in soil amended with various primary minerals. FEMS Microbiol Ecol 27:195–205

    CAS  Google Scholar 

  • Olsson PA, Chalot M, Bååth E, Finlay RD, Söderström B (1996) Reduced bacterial activity in a sandy soil with ectomycorrhizal mycelia growing with Pinus contorta seedlings. FEMS Microbiol Ecol 21:77–86

    CAS  Google Scholar 

  • Palmer RJ Jr, Sternberg C (1999) Modern microscopy in biofilm research: confocal microscopy and other approaches. Curr Opin Biotechnol 10:263–268

    Article  PubMed  CAS  Google Scholar 

  • Paris F, Bonnaud P, Ranger J, Robert M, Lapeyrie F (1995a) Weathering of ammonium-or calcium-saturated 2:1 phyllosilicates by ectomycorrhizal fungi in vitro. Soil Biol Biochem 27:1237–1244

    Article  CAS  Google Scholar 

  • Paris F, Bonnaud P, Ranger J, Lapeyrie F (1995b) In vitro weathering of phlogopite by ectomycorrhizal fungi. I. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution. Plant Soil 177:191–201

    Article  CAS  Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. 2. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150

    Article  CAS  Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    Article  PubMed  CAS  Google Scholar 

  • Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in Gramnegative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97:8789–8793

    Article  PubMed  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants measured by dual labelling with 32P and 33P. New Phytol 124:489–494

    Article  CAS  Google Scholar 

  • Perez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via vegetative mycelium of ectomycorrhizal plants. New Phytol 145:301–309

    Article  CAS  Google Scholar 

  • Perez-Moreno J, Read DJ (2001a) Nutrient transfer from soil nematodes to plants: a direct pathway provided by the mycorrhizal mycelial network. Plant Cell Environ 24:1219–1226

    Article  CAS  Google Scholar 

  • Perez-Moreno J, Read DJ (2001b) Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient cycling in boreal forests. Proc R Soc Lond Ser B 268:1329–1335

    Article  CAS  Google Scholar 

  • Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501

    Article  PubMed  CAS  Google Scholar 

  • Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989) Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol 112:501–511

    Article  Google Scholar 

  • Peyronel B (1923) Fructification de l’endophyte à arbuscules et à vesicules des mycorhizes endotrophes. Bull Soc Mycol 39:119–126

    Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164

    Article  PubMed  CAS  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64

    Article  PubMed  Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GL, Koslowski TT (eds) Ectomycorrhizae. Academic Press, New York, pp 299–343

    Google Scholar 

  • Ravnskov S, Jakobsen I (1999) Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8:329–334

    Article  CAS  Google Scholar 

  • Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113–122

    Article  Google Scholar 

  • Read DJ (1984) The structure and function of the vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 215–240

    Google Scholar 

  • Read DJ (1987) In support of Frank’s organic nitrogen theory. Angew Bot 61:25–37

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres P, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 287–303

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Read DJ, Stribley DP (1975) Some mycological aspects of the biology of mycorrhiza in the Ericaceae. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizae. Academic Press, London, pp 105–117

    Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil: plants, microbes and animals. Blackwell, Oxford, pp 193–217

    Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in “lower” land plants. Philos Trans R Soc Lond B 355:815–831

    Article  CAS  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  PubMed  CAS  Google Scholar 

  • Remy W, Taylor TN, Haas H, Kerp H (1994) Four hundred-million-year-old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    PubMed  CAS  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytol 136:667–677

    Article  Google Scholar 

  • Requena N, Perez-Solis E, Azcón-Aguilar C, Jefferies P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  PubMed  CAS  Google Scholar 

  • Rhodes LH, Gerdemann JW (1975) Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions. New Phytol 75:555–561

    Article  Google Scholar 

  • Robinson D, Fitter AH (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50:9–13

    Article  CAS  Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol profile determined by morphotyping and genetic verification. New Phytol 159:775–783

    Article  CAS  Google Scholar 

  • Rosling A, Lindahl BD, Finlay RD (2004a) Carbon allocation in intact mycorrhizal systems of Pinus sylvestris L. seedlings colonizing different mineral substrates. New Phytol 162:795–802

    Article  Google Scholar 

  • Rosling A, Lindahl BD, Taylor AFS, Finlay RD (2004b) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37

    Article  CAS  PubMed  Google Scholar 

  • Ruess L, Dighton J (1996) Cultural studies on soil nematodes and their fungal hosts. Nematologica 42:330–346

    Article  Google Scholar 

  • Ruiz-Lozano JM, Bonfante P (2000) A Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacB gene, which is involved in host cell colonization by bacteria. Microb Ecol 39:137–144

    Article  PubMed  CAS  Google Scholar 

  • Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pest Sci 4:385–395

    CAS  Google Scholar 

  • Sarand I, Timonen S, Nurmiaho-Lassila E-L, Koivula T, Haahtela K, Romantschuk M, Sen R (1998) Microbial biofilms and degradative catabolic plasmid harbouring fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol Ecol 27:115–126

    CAS  Google Scholar 

  • Sarand I, Timonen S, Koivula T, Peltola R, Haahtela K, Sen R, Romantschuk M (1999) Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. J Appl Microbiol 86:817–826

    Article  PubMed  CAS  Google Scholar 

  • Sarand I, Haario H, Jørgensen, KS, Romantschuk M (2000) Effect of inoculation of a TOL plasmid containing mycorrhizosphere bacterium on development of Scots pine seedlings, their mycorrhizosphere and the microbial flora in m-toluate-amended soil. FEMS Microbiol Ecol 31:127–141

    PubMed  CAS  Google Scholar 

  • Sastry MSR, Sharma AK, Johri BN (2000) Effect of an AM fungal consortium and Pseudomonas on the growth and nutrient uptake of Eucalyptus hybrid. Mycorrhiza 10:55–61

    Article  Google Scholar 

  • Schimel JP, Bennet J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecolgy 85(3):591–602

    Google Scholar 

  • Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469

    Article  PubMed  CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sen R (2000) Budgeting for the wood-wide web. New Phytol 145:161–165

    Article  Google Scholar 

  • Setälä H (1995) Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76:1844–1851

    Article  Google Scholar 

  • Setälä H, Rissanen J, Markkola AM (1997) Conditional outcomes in the relationship between pine and ectomycorrhizal fungi in relation to biotic and abiotic environment. Oikos 80:112–122

    Google Scholar 

  • Setälä H, Kulmala P, Mikola J, Markkola AM (1999) Influence of ectomycorrhiza on the structure of detrital food webs in pine rhizosphere. Oikos 87:113–122

    Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Symbiotic solution to arsenic contamination. Nature 404:951–952

    PubMed  CAS  Google Scholar 

  • Shaw TM, Dighton T, Sanders F (1995) Interactions between ectomycorrhizal and saprotrophic fungi on agar and in association with seedlings of lodgepole pine (Pinus contorta). Mycol Res 99:159–165

    Article  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997a) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Simard SW, Jones MD, Durall DM, Perry DA, Myrold DD, Molina R (1997b) Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytol 137:529–542

    Article  CAS  Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1990) Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: effects of photon irradiance and phosphate nutrition. Aust J Plant Physiol 17:177–188

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. Tansley Rev no 96. New Phytol 137:373–388

    Article  Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366

    Article  Google Scholar 

  • Smits MM, Hoffland E, Jongmans AG, van Breemen N (2005) Contribution of mineral tunneling to total feldspar weathering. Geoderma 125:59–69

    Article  CAS  Google Scholar 

  • Söderström B, Read DJ (1987) Respiratory activity of intact and excised ectomycorrhizal mycelial systems growing in unsterilised soil. Soil Biol Biochem 19:231–236

    Article  Google Scholar 

  • St. John TV, Coleman DC, Reid CPP (1983) Growth and spatial distribution of nutrient absorbing organs: selective exploitation of soil heterogeneity. Plant Soil 71:487–493

    Article  Google Scholar 

  • Stribley DP, Read DJ (1980) The biology of mycorrhiza in the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilise simple and complex organic nitrogen sources. New Phytol 86:365–371

    Article  CAS  Google Scholar 

  • Stubblefield SP, Taylor TN, Trappe JM (1987a) Fossil mycorrhizae: a case for symbiosis. Science 237:59–60

    PubMed  CAS  Google Scholar 

  • Stubblefield SP, Taylor TN, Trappe JM (1987b) Antarctic VAM fossils. Am J Bot 74:1904–1911

    Article  Google Scholar 

  • Stubblefield SP, Taylor TN, Seymour RL (1987 c) A possible endogonaceous fungus from the Triassic of Antarctica. Mycologia 79:905–906

    Google Scholar 

  • Summerbell RC (1987) The inhibitory effect of Trichoderma species and other soil microfungi on mycorrhiza formation by Laccaria bicolor in vitro. New Phytol 105:437–448

    Article  Google Scholar 

  • Summerbell RC (1989) Microfungi associated with the mycorrhizal mantle and adjacent microhabitats within the rhizosphere of black spruce. Can J Bot 67:1085–1095

    Google Scholar 

  • Sun Y-P, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay RD (1999) Exudation-reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other microorganisms. Mycorrhiza 9:137–144

    Article  CAS  Google Scholar 

  • Szaniszlo PJ, Powell PE, Reid CPP, Cline GR (1981) Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia 73:1158–1174

    CAS  Google Scholar 

  • Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci USA 94:4510–4515

    Article  PubMed  CAS  Google Scholar 

  • Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and Beech (Fagus sylvatica L.) in forests along north-south transects in Europe. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies, vol 142. Springer, Berlin Heidelberg New York, pp 343–365

    Google Scholar 

  • Timonen S, Sen R (1998) Heterogeneity of fungal and plant enzyme expression in intact Scots pine-Suillus bovinus and-Paxillus involutus mycorrhizospheres developed in natural forest humus. New Phytol 138:355–366

    Article  Google Scholar 

  • Timonen S, Jørgensen K, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of the Pinus sylvestris-Suillus bovinus and-Paxillus involutus mycorrhizospheres in dry forest humus and nursery peat. Can J Microbiol 44:499–513

    Article  CAS  Google Scholar 

  • Tisdall JM (1974) Possible role of soil microorganisms in aggregation of soils. Plant Soil 159:115–121

    Google Scholar 

  • Tisdall JM, Oades JM (1979) Stabilisation of soil aggregates by the root systems of ryegrass. Aust J Soil Res 17:429–441

    Article  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • Trojanowski J, Haider H, Hüttermann A (1984) Decomposition of 14C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139:202–206

    Article  CAS  Google Scholar 

  • Tsimilli-Michael M, Eggenberg P, Biro B, Köves-Pechy K, Vörös I, Strasser RJ (2000) Synergist and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl Soil Ecol 15:169–182

    Article  Google Scholar 

  • van Breemen N, Finlay RD, Lundström US, Jongmans AG, Giesler R, Olsson M (2000a) Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49:53–67

    Article  Google Scholar 

  • van Breemen N, Lundström US, Jongmans AG (2000b) Do plants drive podzolization via rock-eating mycorrhizal fungi? Geoderma 94:163–171

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Vázquez M Mar, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Article  Google Scholar 

  • Voiblet C, Duplessis S, Encelot N, Martin F (2001) Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J 25:181–191

    Article  PubMed  CAS  Google Scholar 

  • Vosátka M, Gryndler M (2000) Response of micropropagated potatoes transplanted to peat media to post-vitro inoculation with arbuscular mycorrhizal fungi and soil bacteria. Appl Soil Ecol 15:145–152

    Article  Google Scholar 

  • Wallander H (2000a) Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218:249–256

    Article  CAS  Google Scholar 

  • Wallander H (2000b) Use of strontium isotopes and foliar K content to estimate weathering of biotite induced by pine seedlings colonised by ectomycorrhizal fungi from two different soils. Plant Soil 222:215–229

    Article  CAS  Google Scholar 

  • Wallander H, Nylund J-E (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas on Pinus sylvestris L. New Phytol 119:405–411

    Article  Google Scholar 

  • Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32

    Article  CAS  Google Scholar 

  • Wallander H, Wickman T, Jacks G (1997) Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 196:123–131

    Article  CAS  Google Scholar 

  • Warnock AJ, Fitter AH, Usher MB (1982) The influence of a springtail, Folsomia candida (Insecta, Collembola) on the mycorrhizal association of leek, Allium porrum and the vesicular-arbuscular endophyte, Glomus fasciculatus. New Phytol 90:283–292

    Article  Google Scholar 

  • Wilkins DA (1991) The influence of sheathing (ecto-)mycorrhizas of trees on the uptake and toxicity of metals. Agric Ecosys Environ 35:245–260

    Article  CAS  Google Scholar 

  • Wu B, Nara K, Hogetsu T (1999) Competition between ectomycorrhizal fungi colonizing Pinus densiflora. Mycorrhiza 9:151–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Finlay, R. (2005). Action and Interaction in the Mycorrhizal Hyphosphere — a Re-evaluation of the Role of Mycorrhizas in Nutrient Acquisition and Plant Ecology. In: BassiriRad, H. (eds) Nutrient Acquisition by Plants. Ecological Studies, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27675-0_9

Download citation

Publish with us

Policies and ethics