Skip to main content
Log in

Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi

  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Summary

A lysimetric experiment was performed in a greenhouse to evalute root deposition and net release of soluble organic compounds after 1 and 2 years from pine and beech seedlings inoculated with an ectomycorrhizal fungus (Laccaria laccata) and/or rhizobacteria (Agrobacterium radiobacter for beech and Agrobacterium sp. for pine). Total C compounds released in the rhizosphere of both plants increased after inoculation with the bacteria or ectomycorrhizal fungus. The rhizobacteria increased root and plant growth and rhizodeposition, but the mycorrhizal fungi appeared to increase only root deposition. Soluble C compounds, collected after 2 years, represented only 0.1–0.3% of the total C compounds released into the rhizosphere, and were modified by inoculation with the microorganisms. After inoculation with the bacteria, levels of sugars and amino acids decreased in pine and beech rhizospheres, whereas organic acids increased, especially in the pine rhizosphere. In the rhizosphere of mycorrhizal beeches, sugar and amino acids increased, and organic acids differed from those released from non-mycorrhizal beeches. In the mycorrhizal pine rhizosphere, however, all compounds decreased. Following dual inoculations, mycorrhizal colonization increased, no effect on plant growth was observed, and virtually no organic acids were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ågren G, Axelsson B, Flower-Ellis JGK Linder S Persson H, Troeng E (1980) Annual carbon budget for a young Scots pine. Ecol Bull (Stockholm) 32:307–313

    Google Scholar 

  • Barber DA, Gunn KB (1974) The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions. New Phytol 73:39–45

    Google Scholar 

  • Barber DA, Lynch JM (1977) Microbial growth in the rhizosphere. Soil Biol Biochem 9:305–308

    Google Scholar 

  • Barber DA, Martin JK (1976) The release of organic substances by cereal roots into soil. New Phytol 76:69–80

    Google Scholar 

  • Barea JM, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Bacteriol 40:129–134

    Google Scholar 

  • Beck SM, Gilmour CM (1983) Role of wheat root exudates in associative nitrogen fixation. Soil Biol Biochem 15:33–38

    Google Scholar 

  • Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Scientific, Oxford London, pp 223–262

    Google Scholar 

  • Berthelin J, Leyval C (1982) Ability of symbiotic and non symbiotic rhizospheric microflora of maize (Zea mays) to weather micas and to promote plant growth and plant nutrition. Plant and Soil 68:369–377

    Google Scholar 

  • Bowen GD (1969) Nutrient status effects on loss of amides and amino acids from pine roots. Plant and Soil 30:139–142

    Google Scholar 

  • Brink RH Jr, Dubach P, Lynch DL (1960) Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci 89:157–166

    Google Scholar 

  • Duponnois R, Garbaye J (1990) Some mechanisms involved in growth stimulation of ectomucorrhizal fungi by bacteria. Can J Bot 68:2148–2152

    Google Scholar 

  • Frankenberger WT Jr, Poth M (1987) Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus Pisolithus tinctorius. Appl Environ Microbiol 53:2908–2913

    Google Scholar 

  • Fries N, Bardet M, Serck-Hanssen K (1985) Growth of ectomycorrhizal fungi stimulated by lipids from a pine root exudate. Plant and Soil 86:287–290

    Google Scholar 

  • Haller T, Stolp H (1985) Quantitative estimation of root exudation of maize plants. Plant and Soil 86:207–216

    Google Scholar 

  • Hanley KM, Green DW (1987) Gibberellin-like compounds from two ectomycorrhizal fungi and the GA3 response on Scots pine seedlings. Hortic Sci 22:591–594

    Google Scholar 

  • Harris D, Paul EA (1987) Carbon requirements of vesicular-arbuscular mycorrhizae. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, Florida, pp 93–106

    Google Scholar 

  • Holl FB, Chanway CP (1992) Rhizosphere colonization and seedling growth promotion of lodgepole pine by Bacillus polymyxa. Can J Microbiol 38:303–308

    Google Scholar 

  • Ingham ER, Molina R (1991) Interactions among mycorrhizal fungi, rhizosphere organisms, and plants. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. John Wiley & Sons, New York, pp 169–197

    Google Scholar 

  • Kampert M, Strzelczyk E, Pokojska A (1975) Production of auxins by bacteria isolated from the roots of pine seedlings (Pinus sylvestris L.). Acta Microbial Polon S.B. 7:135–143

    Google Scholar 

  • Katznelson H, Rouatt JW, Peterson EA (1962) The rhizosphere effect of mycorrhizal and non-mycorrhizal roots of yellow birch seedlings. Can J Bot 40:377–382

    Google Scholar 

  • Kidd FA, Wullschleger SD, Dawley K, Reid CPP (1982) Use of gentamicin in axenic culturing of ectomycorrhizal plants. Appl Environ Microbiol 44:506–508

    Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: Influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    Google Scholar 

  • Krupa S, Fries N (1971) Studies on ectomycorrhizae of pine. Production of organic volatile compounds. Can J Bot 49:1425–1431

    Google Scholar 

  • Laheurte F, Berthelin J (1986) Influence of endomycorrhizal infection by Glomus mosseae on root exudation of maize. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 425–429

    Google Scholar 

  • Laheurte F, Berthelin J (1988) Effect of a phosphate-solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant and Soil 105:11–17

    Google Scholar 

  • Leyval C (1988) Interactions bactéries-mycorhizes dans la rhizosphère du pin sylvestre et du hêtre: Incidences sur l'exudation racinaire et l'altération des minéraux. PhD thesis, University of Nancy, France

  • Leyval C (1990) The interactions between microorganisms, minerals and forest tree roots: Lysimeters in a greenhouse. In: Harrison AF, Ineson P, Heal OW (eds) Nutrient cycling in terrestrial ecosystems-Field methods, applications and interpretation. Elsevier, London, pp 335–346

    Google Scholar 

  • Leyval C, Berthelin J (1982) Rôle des microflores symbiotiques et non symbiotiques sur l'altération de la biotite et la croissance du maïs (Zea mays): Influence des conditions de milieu. Sci Sol 1:3–14

    Google Scholar 

  • Leyval C, Berthelin J (1988) Interactions between ectomycorrhizal fungi and phosphate-solubilizing bacteria: Phosphorus mobilization from different inorganic phosphates. In: Giovannozzi-Sermanni G, Nannipieri P (eds) Current perspectives in environmental biogeochemistry. Consiglio Nazionale delle Ricerche-IPRA, Rome, pp 257–270

    Google Scholar 

  • Leyval C, Berthelin J (1989) Influence of acid-producing Agrobacterium and Laccaria laccata on pine and beech growth, nutrient uptake and exudation. Agric Ecosyst Environ 28:313–319

    Google Scholar 

  • Leyval S, Berthelin J (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55: 1009–1016

    Google Scholar 

  • Martin JK (1977) Factors influencing the loss of organic carbon from wheat roots. Soil Biol Biochem 9:1–7

    Google Scholar 

  • Moore S, Stein WH (1954) A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem 211:907–913

    Google Scholar 

  • Perrons H (1978) Root dynamics in a young Scots pine stand in central Sweden. Oikos 30:508–519

    Google Scholar 

  • Plassard C, Mousain D, Salsac L (1983) Dosage de la chintine sur des ectomycorhizes de pin maritime (Pinus pinaster) à Pisolithus tinctorius: Evaluation de la masse mycélienne et de la mycorhization. Can J Bot 61:692–699

    Google Scholar 

  • Prikryl Z, Vancura V (1977) Quantitative estimation of root exudates in the presence of microorganisms. Folia Microbiol 22:460–461

    Google Scholar 

  • Prikryl Z, Vancura V (1980) Root exudates of plants. VI. Wheat root exudation as dependent on growth concentration gradient of exudates and the presence of bacteria. Plant and Soil 57:69–83

    Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GL, Koslowski TT (eds) Ectomycorrhizae: Their ecology and physiology. Academic Press, New York, pp 299–343

    Google Scholar 

  • Reid CPP, Kidd FA, Ekwebelam SA (1983) Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant and Soil 71:415–431

    Google Scholar 

  • Robert M, Berthelin J (1986) Role of biological and biochemical factors in soil mineral weathering. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am Spec Pub, Madison, Wisconsin, 17:453–495

    Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:17–34

    Google Scholar 

  • Rovira AD, Foster RC, Martin JK (1979) Origin, nature and nomenclature of organic materials in the rhizosphere. In: Russel RS, Harley JL (eds) The soil root interface. Academic Press, New York, pp 1–4

    Google Scholar 

  • Schönwitz R, Ziegler H (1982) Exudation of water-soluble vitamins and of some carbohydrates by intact roots of maize seedings (Zea mays L.) into a mineral nutrient solution. Z Pflanzenphysiol 107:7–14

    Google Scholar 

  • Shamoot S, Mac Donald I, Bartholonew MV (1968) Rhizodeposition of organic debris in soil. Soil Sci Soc Am Proc 32:817–820

    Google Scholar 

  • Smith WH (1969) Release of organic materials from the roots of tree seedlings. For Sci 15:138–143

    Google Scholar 

  • Smith WH (1970) Root exudates of seedlings and mature sugar maple. Phytopathology 60:701–703

    Google Scholar 

  • Stanek M, Ricica J, Simova E, El-Shanawani MZ (1983) Effect of the polysaccharide of Agrobacterium radiobacter on the growth of plants and occurrence of damping-off in sugar beet. Folia Microbiol 28:91–99

    Google Scholar 

  • Strzelczyk E, Pokojska-Burdziej A (1984) Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus sylvestris L.). Plant and Soil 81:185–194

    Google Scholar 

  • Strzelczyk E, Rozycki H, Pokojska-Burdziej A, Kampert M (1986) Production of some organic substances by mycorrhizal fungi of pine (Pinus sylverstris L.). In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 547–550

    Google Scholar 

  • Vancura V, Jandera A (1986) Formation of biologically active metabolites by rhizosphere microflora. In: Jensen V, Kjoeller A, Soerensen LH (eds) Microbial communities in soil. Elsevier Applied Science, Essex, pp 73–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyval, C., Berthelin, J. Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol Fertil Soils 15, 259–267 (1993). https://doi.org/10.1007/BF00337210

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337210

Key words

Navigation