Skip to main content

Network Dynamics in Plant Biology: Current Progress in Historical Perspective

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 66))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74: 47–97

    Article  Google Scholar 

  • Aldana M (2003) Boolean dynamics of networks with scale-free topology. Physica D 185: 45–66

    Article  ISI  Google Scholar 

  • Aldana M, Coppersmith S, Kadanoff LP (2003) Boolean dynamics with random couplings. In: Kaplan E, Marsden JE, Sreenivasan KR (eds) Perspectives and problems in nonlinear science. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Almaas E, Kovács B, Vicsek T, Oltvai ZN, Barabási AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427: 839–843

    Article  PubMed  CAS  ISI  Google Scholar 

  • Amit DJ (1989) Modeling brain function: the world of attractor neural networks. Cambridge University Press, Cambridge

    Google Scholar 

  • Antogoni F, Fornale S, Grimmer C, Komor E, Bagni N (1998) Long-distance translocation of polyamines in phloem and xylem of Ricinus communis L. plants. Planta 204: 520–527

    Google Scholar 

  • Baier G, Sahle S (1998) Homogeneous and spatio-temporal chaos in biochemical reactions with feedback inhibition. J Theor Biol 193: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Barabási AL (2002) Linked: the new science of networks. Perseus, London

    Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286: 509–512

    PubMed  Google Scholar 

  • Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5: 101–113

    PubMed  Google Scholar 

  • Barak S, Tobin EM, Andronis C, Sugano S, Green RM (2000) All in good time: the Arabidopsis circadian clock. Trends Plant Sci 5: 517–522

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte JB, Liebovitch LS, West BJ (1994) Fractal physiology. Oxford University Press, Oxford

    Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24: 1269–1278

    Article  CAS  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132: 618–628

    Article  PubMed  CAS  ISI  Google Scholar 

  • Beck F, Blasius B, Lüttge U, Neff R, Rascher U (2001) Stochastic noise interferes coherently with a model biological clock and produces specific dynamic behaviour. Proc R Soc B 268: 1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210: 215–221

    PubMed  CAS  ISI  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24: 267–278

    Article  CAS  Google Scholar 

  • Blázquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404: 889–892

    PubMed  Google Scholar 

  • Bornholdt S (2001) Modelling genetic networks and their evolution: a complex dynamical systems perspective. Biol Chem 382: 1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Bornholdt S, Sneppen K (1998) Neutral mutations and punctuated equilibrium in evolving genetic networks. Phys Rev Lett 81: 236–239

    Article  CAS  Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygen as signals for controlling cross tolerance. Trends Plant Sci 5: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Cheng N-H, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15: 347–364

    PubMed  CAS  ISI  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55: 225–236

    PubMed  CAS  Google Scholar 

  • Cockburn W, Patel K (2001) Control of internal carbon dioxide concentration during decarboxylation in CAM plants. In: Holtum JAM (ed) Proc CAM 2001, School of Tropical Biology, James Cook University, Townsville, p 213

    Google Scholar 

  • Crawford NM (1997) Nitrate: nutrient and signal for plant growth. Plant Cell 7: 859–868

    Google Scholar 

  • De Perlinghi J (2003) Isabelle Stengers: ‘Et si un jour les sciences devenaient civilisée...’. La Recherche 367: 67–70

    Google Scholar 

  • Devlin PF, Kay SA (2000) Flower arranging in Arabidopsis. Science 288: 1600–1602

    Article  PubMed  CAS  ISI  Google Scholar 

  • Drossel B, Schwabl F (1992) Self-organized critical forest-fire model. Phys Rev Lett 69: 1629–1632

    Article  PubMed  Google Scholar 

  • Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5: 17–61

    Google Scholar 

  • Erwin TL (1982) Tropical forests: their richness in coleoptera and other arthropod species. Coleopt Bull 36: 74–75

    Google Scholar 

  • Erwin TL (1995) Measuring arthropod diversity in the tropical forest canopy. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, pp 109–127

    Google Scholar 

  • Farkas IJ, Derényi I, Jeong H, Neda Z, Oltvai ZN, Ravasz E, Schurbert A, Barabási AL (2003) The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Physica A381: 601–612

    Google Scholar 

  • Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18: 1121–1122

    Article  PubMed  CAS  Google Scholar 

  • Felle HH (2001) pH: signal and messenger in plant cells. Plant Biol 3: 577–591

    Article  CAS  ISI  Google Scholar 

  • Fox JJ, Hill CC (2001) From topology to dynamics in biochemical networks. Chaos 11: 809–815

    Article  PubMed  CAS  ISI  Google Scholar 

  • Foyer CH, Lopez-Delgado L, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanism of acclimatory stress tolerance and signaling. Physiol Plant 100: 241–254

    Article  CAS  Google Scholar 

  • Furuichi T, Mori IC, Takahashi K, Muto S (2001) Sugar-induced increase in cytosolic Ca2+ in Arabidopsis thaliana whole plants. Plant Cell Physiol 42: 1149–1155

    PubMed  CAS  Google Scholar 

  • Gibson SI (2000) Plant sugar-response-pathways. Part of a complex regulatory web. Plant Physiol 124: 1532–1539

    Article  PubMed  CAS  ISI  Google Scholar 

  • Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li YL, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM (2003) A protein interaction map of Drosophila melanogaster. Science 3025: 1727–1736

    Google Scholar 

  • Girke T, Ozkan M, Carter D, Raikhel NV (2003) Towards a modeling infrastructure for studying plant cells. Plant Physiol 132: 410–414

    Article  PubMed  CAS  ISI  Google Scholar 

  • Golden SS, Strayer C (2001) Time for plants. Progress in plant chronobiology. Plant Physiol 125: 98–101

    Article  PubMed  CAS  ISI  Google Scholar 

  • Graham I, Matthai CC (2003) Investigation of the forest-fire model on a small-world network. Phys Rev E 68:036109

    Article  CAS  Google Scholar 

  • Guardiola X, Diaz-Guilera A, Lilas M, Pérez CJ (2000) Synchronization, diversity and topology of networks of integrate and fire oscillators. Phys Rev E 62: 5565–5570

    Article  CAS  Google Scholar 

  • Guare J (1990) Six degrees of separation: a play. Vintage Books, New York

    Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290: 2110–2113

    Article  PubMed  CAS  ISI  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402: C47–C52

    Article  PubMed  CAS  ISI  Google Scholar 

  • Heldt HW (1976a) Metabolite carriers of chloroplasts. In: Stocking CR, Heber U (eds) Transport in plants III. Intracellular interactions and transport processes. Encyclopedia of plant physiology new series, vol 3. Springer, Berlin Heidelberg New York, pp 137–143

    Google Scholar 

  • Heldt HW (1976b) Transport of metabolites between cytoplasm and the mitochondrial matrix. In: Stocking CR, Heber U (eds) Transport in plants III. Intracellular interactions and transport processes. Encyclopedia of plant physiology new series, vol 3. Springer, Berlin Heidelberg New York, pp 235–254

    Google Scholar 

  • Hütt MT (2001) Datenanalyse in der Biologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hütt MT, Lüttge U (2002) Nonlinear dynamics as a tool for data analysis and modeling in plant physiology. Plant Biol 4: 281–297

    Google Scholar 

  • Hütt MT, Neff R, Busch H, Kaiser F (2002) A method for detecting the signature of spatiotemporal stochastic resonance. Phys Rev E 66: 026117

    Google Scholar 

  • Hütt MT, Busch H, Kaiser F (2003) The effect of biological variability on spatiotemporal patterns: model simulations for a network of biochemical oscillators. Nova Acta Leopoldina 332: 381–404

    Google Scholar 

  • Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, McAinsh MR, Hetherington AM, Gray JE (2003) Phospholipase Cis required for the control of stomatal aperture by ABA. Plant Cell 34: 47–55

    CAS  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281: 1519–1523

    Article  PubMed  CAS  ISI  Google Scholar 

  • Iwasaki H, Kondo T (2000) The current state and problems of circadian clock studies in cyanobacteria. Plant Cell Physiol 41: 1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Jensen HJ (1998) Self-organized criticality. Cambridge University Press, Cambridge

    Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltavi ZN, Barabási A-L (2000) The large scale organization of metabolic networks. Nature 407: 651–654

    PubMed  CAS  ISI  Google Scholar 

  • Jeong H, Mason SP, Barabási A-L, Ottavi ZN (2001) Lethality and centrality in protein networks. Nature 411: 41–42

    Article  PubMed  CAS  ISI  Google Scholar 

  • Kanz KT (2003) Christian Gottfried Nees von Esenbeck. Briefwechsel mit Johann Wolfgang von Goethe nebst ergänzenden Schriften. Acta Historica Leopoldina, no. 40. Deutsche Akademie der Naturforscher Leopoldina, Halle and Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Katayama M, Tsinoremas NF, Kondo T, Golden SS (1999) cpmA, a gene involved in an output pathway of the cyanobacterial circadian system. J Bacteriol 181: 3516–3524

    PubMed  CAS  Google Scholar 

  • Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22: 437–467

    Article  PubMed  CAS  Google Scholar 

  • Kauffman S, Peterson C, Samuelsson B, Troein C (2003) Random Boolean network models and the yeast transcriptional network. Proc Natl Acad Sci USA 100: 14796–14799

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg M (1970) Metabolite transport in mitochondria: an example of intracellular membrane function. Essays Biochem 6: 119–159

    PubMed  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 509–540

    Article  PubMed  CAS  Google Scholar 

  • Koorneef M, Alonso-Blanco C, Peeters AJM, Soppe W (1998) Genetic control of flowering in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49: 345–370

    Google Scholar 

  • Kratochwil A (1998) Biodiversity in ecosystems. Atti Convegni Lincei 145: 23–62

    Google Scholar 

  • Kuno N, Moller SG, Shinomura T, Xu XM, Chua NH, Furuya M (2003) The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE 1 is a component of a slave circadian oscillator in Arabidopsis. Plant Cell 15: 2476–2483

    Article  PubMed  CAS  ISI  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Laby RJ, Kincaid S, Kim D, Gibson SI (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23: 587–596

    Article  PubMed  CAS  ISI  Google Scholar 

  • Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11: 707–726

    Article  PubMed  CAS  ISI  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54: 109–136

    Article  PubMed  CAS  Google Scholar 

  • Lehle L (1990) Phosphatidyl inositol metabolism and its role in signal transduction in growing plants. Plant Mol Biol 15: 647–658

    Article  PubMed  CAS  Google Scholar 

  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JDJ, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A (2004) A map of the interactome network of the Metazoan C. elegans. Science 303: 540–543

    Article  PubMed  CAS  ISI  Google Scholar 

  • Linsenmair KE (1995) Biologische Vielfalt und ökologische Stabilität. In: Markl H, Geiler G, Großmann S, Oesterhelt D, Schmidbaur H, Quadbeck-Seeger H-J, Truscheit E (eds) Wissenschaft in der globalen Herausforderung. Edition Universitas. Hirzel Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 267–295

    Google Scholar 

  • Lüttge U (1974) Co-operation of organs in intact higher plants: a review. In: Zimmermann U, Dainty J (eds) Membrane transport in plants. Springer, Berlin Heidelberg New York, pp 353–362

    Google Scholar 

  • Lüttge U (2002a) CO2-concentrating: consequences in Crassulacean acid metabolism. J Exp Bot 53: 2131–2142

    PubMed  Google Scholar 

  • Lüttge U (2002b) Circadian rhythmicity: is the ‘biological clock’ hardware or software? Progress in Botany, vol 64. Springer, Berlin Heidelberg New York, pp 277–319

    Google Scholar 

  • Lüttge U (2003) Circadian rhythms. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences. Elsevier, Academic Press, Amsterdam, pp 1084–1096

    Google Scholar 

  • Lüttge U (2004) Ecophysiology of Crassulacean acid metabolism (CAM). Ann Bot 93: 629–652

    PubMed  Google Scholar 

  • Maathuis FMJ, Filatov V, Herzyk P et al. (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35: 675–692

    Article  PubMed  CAS  ISI  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol 39: 23–52

    CAS  Google Scholar 

  • Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296: 910–913

    Article  PubMed  CAS  ISI  Google Scholar 

  • Mata CG, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126: 1196–1204

    Article  PubMed  CAS  ISI  Google Scholar 

  • Maxwell BB, Andersson CR, Poole DS, Kay SA, Chory J (2003) HY5, circadian clock-associated 1, and a cis-element, DET 1 dark response element, mediate DET1 regulation of chlorophyll a/b-binding protein 2 expression. Plant Physiol 133: 1565–1577

    Article  PubMed  CAS  ISI  Google Scholar 

  • May RM (1988) How many species are there on earth? Science 241: 1441–1449

    ISI  PubMed  Google Scholar 

  • McClung CR (2000) Circadian rhythms in plants: a millennial view. Physiol Plant 109: 359–371

    CAS  Google Scholar 

  • Milgram S (1967) The small world problem. Psychol Today 2: 60–67

    Google Scholar 

  • Millar AJ (1999) Biological clocks in Arabidopsis thaliana. New Phytol 141: 175–197

    Article  CAS  ISI  Google Scholar 

  • Minorsky PV (2003) Achieving the in silico plant. Systems biology and the future of plant biological research. Plant Physiol 132: 404–409

    CAS  ISI  Google Scholar 

  • Morcuende R, Krapp A, Hurry V, Stitt M (1998) Sucrose-feeding leads to increased rates of nitrate assimilation, increased rates of α-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tobacco leaves. Planta 206: 394–409

    Article  CAS  ISI  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159: 11–35

    Article  CAS  ISI  Google Scholar 

  • Newman MEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci USA 98: 404–409

    PubMed  CAS  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45: 167–256

    Article  ISI  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulphur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33: 633–650

    Article  PubMed  CAS  ISI  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization. A universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Pitman MG (1972) Uptake and transport of ions in barley seedlings. III. Correlation of potassium transport to the shoot with plant growth. Aust J Biol Sci 25: 905–919

    CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high salinity stresses and abscisic acid and application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133: 1755–1767

    Article  PubMed  CAS  ISI  Google Scholar 

  • Raikhel NV, Coruzzi GM (2003) Plant systems biology. Plant Physiol 132: 403

    ISI  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barábasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297: 1551–1555

    Article  PubMed  CAS  ISI  Google Scholar 

  • Rengel Z, Zhang W-H (2003) Role of dynamics of intracellular calciumin aluminum-toxicity syndrome. Plant Physiol 159: 295–314

    CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANs target genes in reproductive development of Arabidopsis. Science 288: 1613–1616

    Article  PubMed  CAS  ISI  Google Scholar 

  • Scheible W-R, Gonzales-Fontes A, Lauerer M, Müller-Röber B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9: 783–798

    Article  PubMed  CAS  ISI  Google Scholar 

  • Schimper AFW (1883) Über die Entwicklung der Chloröphyllkörner und Farbkörner. Bot Zeit 41: 105–114

    Google Scholar 

  • Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289: 765–768

    Article  PubMed  CAS  ISI  Google Scholar 

  • Schnepf E (1966) Organellen-Reduplikation und Zellkompartimentierung. In: Sitte P (ed) Probleme der biologischen Reduplikation, 3.Wiss Konf Ges Dt Naturf Ärzte, Semmering 1965. Springer, Berlin Heidelberg New York, pp 371–393

    Google Scholar 

  • Sheen J, Zhou L, Jang J-C (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2: 410–418

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Gendall AR, Dean C (1998) The control of flowering time and floral identity in Arabidopsis. Plant Physiol 117: 1–8

    Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51: 49–81

    Article  PubMed  CAS  Google Scholar 

  • Solé RV, Manrubia SC, Luque B, Delgado J, Bascompte J (1996) Phase transitions and complex systems. Complexity 2: 13

    Google Scholar 

  • Somers DE (1999) The physiology and molecular bases of the plant circadian clock. Plant Physiol 121: 9–19

    Article  PubMed  CAS  ISI  Google Scholar 

  • Staiger D (2000) Biologische Zeitmessung bei Pflanzen. Biol Unserer Zeit 30: 76–79

    Google Scholar 

  • Stocking CR, Heber U (eds) (1976) Transport in plants III. Intracellular interactions and transport processes. Encyclopedia of plant physiology new series, vol 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stöhr C (1999) Relationship of nitrate supply with growth rate, plasma membrane-bound and cytosolic nitrate reductase, and tissue nitrate content in tobacco plants. Plant Cell Environ 2: 169–177

    Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich W, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212: 835–841

    PubMed  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410: 268–276

    Article  PubMed  CAS  ISI  Google Scholar 

  • Sweetlove LJ, Last RL, Fernia AR (2003) Predictive metabolic engineering: a goal for systems biology. Plant Physiol 132: 420–425

    Article  PubMed  CAS  ISI  Google Scholar 

  • Taylor JE, McAinsh MR (2004) Signalling crosstalk in plants: emerging issues. J Exp Bot 55: 147–149

    PubMed  CAS  Google Scholar 

  • Theißen G, Saedler H (1997) Molecular architects of plant body plans. Prog Bot 59: 227–256

    Google Scholar 

  • Thron CD (1991) Biochemical oscillations. Bull Math Biol 53: 383

    CAS  Google Scholar 

  • Tong AHY, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen YQ, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Ménard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C (2004) Global mapping of the yeast genetic interaction network. Science 303: 808–813

    Article  PubMed  CAS  ISI  Google Scholar 

  • Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc R Soc Lond B 268: 1803–1810

    Article  CAS  Google Scholar 

  • Walden R, Cordeiro A, Triburcio AF (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113: 1009–1013

    Article  PubMed  CAS  ISI  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron and sulphate metabolism. Plant Physiol 132: 556–567

    PubMed  CAS  ISI  Google Scholar 

  • Watts DJ (1999) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, Princeton

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393: 440–442

    Article  PubMed  CAS  ISI  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54: 669–689

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132: 1260–1271

    Article  PubMed  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hütt, MT., Lüttge, U. (2005). Network Dynamics in Plant Biology: Current Progress in Historical Perspective. In: Esser, K., Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27043-4_12

Download citation

Publish with us

Policies and ethics