Skip to main content
Log in

Phosphatidyl inositol metabolism and its role in signal transduction in growing plants

  • Update Section
  • Mini-review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Ins:

D-myo-inositol

Ins(1)P:

D-myo-inositol 4-monophosphate

InsP3 :

inositol trisphosphate (unspecified isomer)

PtdIns:

phosphatidylinositol

PtdIns(4)P:

phosphatidyl 4-phosphate

PA:

phosphatidic acid

DAG:

diacylglycerol

AA:

arachidonic acid

PLC:

phospholipase C

PKC:

protein kinase C

PLA:

phospholipase A

PLD2 :

phospholipase D

CaM:

Calmodulin

R:

receptor

G:

G-protein

References

  1. Aiyar N, Bennett CF, Nambi P, Valinsky W, Angioli M, Minnich M, Crooke ST: Solubilization of rat liver vasopression receptors as a complex with a guanine-nucleotide-binding protein and phosphoinositide-specific phospholipase C. Biochem J 261: 63–71 (1989).

    PubMed  Google Scholar 

  2. Alexandre J, Lassalles JP, Kado RT: Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate. Nature 343: 567–570 (1990).

    Article  Google Scholar 

  3. Altin JG, Bygrave FL: The Ca2+-mobilizing actions of vasopressin and angiotensin differ from those of the α-adrenergic agonist phenylephrine in the perfused rat liver. Biochem J 232: 911–917 (1985).

    PubMed  Google Scholar 

  4. Bell RM: Protein kinase C activation by diacylglycerol second messengers. Cell 45: 631–632 (1986).

    Article  PubMed  Google Scholar 

  5. Berridge MJ: Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56: 159–193 (1987).

    PubMed  Google Scholar 

  6. Berridge MJ, Irvine RF: Inositol phosphates and cell signalling. Nature 341: 197–205 (1989).

    Article  PubMed  Google Scholar 

  7. Besterman JM, Pollenz RS, Booker ELJr, Cuatrecasas P: Diacylglycerol-kinase-induced translocation of diacylglycerol kinase: Use of affinity-purified enzyme in reconstitution system. Proc Natl Acad Sci USA 83: 9378–9382 (1986).

    PubMed  Google Scholar 

  8. Blum W, Hinsch KD, Schultz G, Weiler EW: Identification of GTP-binding proteins in the plasma membrane of higher plants. Biochem Biophys Res Commun 156: 954–959 (1988).

    PubMed  Google Scholar 

  9. Boss WF, Massel MO: Polyphosphoinositides are present in plant tissue culture cells. Biochem Biophys Res Commun 132: 1018–1023 (1985).

    PubMed  Google Scholar 

  10. Brosnan JM, Sanders D: Inositol trisphosphate-mediated Ca2+ release in beet microsomes is inhibited by heparin. FEBS Lett 260: 70–72 (1990).

    Article  Google Scholar 

  11. Brown EG, Newton RP: Cyclic AMP and higher plants. Phytochemistry 20: 2453–2463 (1981).

    Article  Google Scholar 

  12. Bush DR, Sze H: Calcium transport in tonoplast and endoplasmic reticulum vesicles isolated from cultured carrot cells. Plant Physiol 80: 549–555 (1986).

    Google Scholar 

  13. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y: Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbolesters. J Biol Chem 257: 7847–7851 (1982).

    PubMed  Google Scholar 

  14. Connolly TM, Lawing WJJr, Majerus PW: Protein-kinase C phosphorylates human platelet triphosphate 5′-phosphomonoesterase, increasing the phosphatase activity. Cell 46: 951–958 (1986).

    Article  PubMed  Google Scholar 

  15. Connett RJA, Hanke DE: Changes in the pattern of phospholipids synthesis during the induction by cytokinin of cell division in soybean suspension cultures. Planta 170: 161–167 (1987).

    Google Scholar 

  16. Cornelius G, Gebauer G, Techel D: Inositol trisphosphate induces calcium release from Neurospora crassa vacuoles. Biochem Biophys Res Commun 162: 852–856 (1989).

    PubMed  Google Scholar 

  17. Coté GG, Morse MJ, Crain RC, Satter RL: Isolation of soluble metabolites of the phosphatidylinositol cycle from Samanea saman. Plant Cell Rep 6: 352–355 (1987).

    Article  Google Scholar 

  18. Coté GG, De Pass Al, Quarmby LM, Tate BF, Morse MJ, Satter RL, Crain RC: Separation and characterization of inositol phospholipids from the pulvini of Samanea saman. Plant Physiol 90: 1422–1428 (1989).

    Google Scholar 

  19. Dillenschneider M, Hetherington AM, Graziana A, Alibert G, Berta P, Haiech J, Ranjeva R: The formation of inositol phosphate derivatives by isolated membranes from Acer pseudoplatanus is stimulated by guanine nucleotides. FEBS Lett 208: 413–417 (1986).

    Article  Google Scholar 

  20. Downes CP, Michell RH: Inositol phospholipid breakdown as a receptor-controlled generator of second messengers. In: Cohen P, Hously M (eds) Molecular Mechanisms of Transmembrane Signalling, pp. 3–56. Elsevier, Amsterdam (1985).

    Google Scholar 

  21. Downes P, Berrie CP, Hawkins PT, Stephens L, Boyer JL, Harden TK: Receptor and G-protein-dependent regulation of turkey erythrocyte phosphoinositidase C. Phil Trans R Soc Lond B 320: 267–280 (1988).

    Google Scholar 

  22. Drøbak BK, Ferguson IB: Release of Ca2+ from plant hypocotyl microsomes by inositol-1,4,5-trisphosphate. Biochem Biophys Res Commun 130: 1241–1246 (1985).

    PubMed  Google Scholar 

  23. Drøbak BK, Allan EF, Comerford JG, Roberts K, Dawson AP: Presence of guanine nucleotide-binding proteins in a plant hypocotyl microsomal fraction. Biochem Biophys Res Commun 150: 899–903 (1988).

    PubMed  Google Scholar 

  24. Drøbak BJ, Ferguson IB, Dawson AP, Irvine RF: Inositol-containing lipids in suspension cultured plant cells: An isotopic study. Plant Physiol 87: 217–222 (1988).

    Google Scholar 

  25. Einspahr KJ, Peeler TC, Thompson GAJr: Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. J Biol Chem 263: 5775–5779 (1988).

    PubMed  Google Scholar 

  26. Einspahr KJ, Peeler TC, Thompson GAJr: Phosphatidyl 4,5-bisphosphate phospholipase C and phosphomonoesterase in Danaliella salina membranes. Plant Physiol 90: 1115–1120 (1989).

    Google Scholar 

  27. Elliot DC, Skinner JD: Calcium-dependent, phospholipid-activated protein kinase in plants. Phytochemistry 25: 39–44 (1986).

    Article  Google Scholar 

  28. Ettlinger C, Lehle L: Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331: 176–178 (1988).

    Article  PubMed  Google Scholar 

  29. Fain JN, Wallace MA, Wojcikiewicz RJH: Evidence for involvement of guanine nucleotide-binding regulatory proteins in the activation of phospholipase by hormones. FASEB 2: 2569–2574 (1988).

    Google Scholar 

  30. Falkenau C, Heim S, Wagner KG: Effect of cytokinins on the phospholipid phosphorylation of the suspension cultured Catharanthus roseus cells. Plant Sci 50: 173–178 (1987).

    Article  Google Scholar 

  31. Favre B, Turian G: Identification of a calcium- and phospholipid-dependent protein kinase (protein kinase C) in Neurospora crassa. Plant Sci 49: 15–21 (1987).

    Article  Google Scholar 

  32. Gander JE: Polyhydroxy acids: relation to hexose phosphate metabolism. In: Loewus FA, Tanner W (eds) Encyclopedia of Plant Physiology, New Series, Vol 13A, pp. 77–102. Springer, Berlin/Heidelberg/New York (1982).

    Google Scholar 

  33. Ghosh TK, Mullaney JM, Tarazi FI, Gill DL: GTP-activated communication between distinct inositol 1,4,5-trisphosphate sensitive and insensitive calcium pools. Nature 340: 236–239 (1989).

    Article  PubMed  Google Scholar 

  34. Gilman AG: G proteins: Transducers of receptor generated signals. Annu Rev Biochem 56: 615–649 (1987).

    Article  PubMed  Google Scholar 

  35. Gumber SC, Loewus MW, Loewus FA: Further studies on myo-inositol-1-phosphatase from the pollen of Lilium longiflorum Thunb. Plant Physiol 76: 40–44 (1984).

    Google Scholar 

  36. Hasunuma K, Funadera K: GTP binding protein(s) in green plant Lemna paucicostata. Biochem Biophys Res Commun 143: 908–912 (1987).

    PubMed  Google Scholar 

  37. Hasunuma K, Furukawa K, Tomita K, Mukai C, Nakamura T: GTP-binding proteins in etiolated epicotyls of Pisum sativum (Alaska) seedlings. Biochem Biophys Res Commun 148: 133–139 (1987).

    Article  PubMed  Google Scholar 

  38. Heim S, Wagner KG: Evidence of phosphorylated phosphatidylinositols in the growth cycle of suspension cultured plant cells. Biochem Biophys Res Commun 134: 1175–1181 (1986).

    PubMed  Google Scholar 

  39. Heim S, Wagner KG: Enzymatic activities of the phosphatidylinositol cycle during growth of suspension cultured plant cells. Plant Sci 49: 167–173 (1987).

    Article  Google Scholar 

  40. Heim S, Wagner KG: Inositol phosphates in the growth cycle of suspension cultured plant cells. Plant Sci 63: 159–165 (1989).

    Article  Google Scholar 

  41. Heim S, Bauleke A, Wylegalla C, Wagner KG: Evidence of phosphatidylinositol and diacylglycerol kinases in suspension cultured plant cells. Plant Sci 49: 159–165 (1987).

    Article  Google Scholar 

  42. Helsper JPFG, De Groot PFM, Linskens HF, Jackson JF: Phosphatidylinositol phospholipase C activity in pollen in Lilium longiflorum. Phytochemistry 25: 2053–2055 (1986).

    Article  Google Scholar 

  43. Helsper JPFG, De Groot PFM, Linskens HF, Jackson JF: Phosphatidylinositol monophosphate in Lilium pollen and turnover of phospholipid during pollen tube extension. Phytochemistry 25: 2193–2199 (1986).

    Article  Google Scholar 

  44. Helsper JPFG, Heemskerk JWM, Veerkamp JH: Cytosolic and particulate phosphatidylinositol phospholipase C activities in pollen tubes of Lilium longiflorum. Physiol Plantarum 71: 120–126 (1987).

    Google Scholar 

  45. Helsper JPFG, Linskens HF, Jackson JF: Phytate metabolism in Petunia pollen. Phytochemistry 23: 1841–1845 (1984).

    Article  Google Scholar 

  46. Hokin LE: Receptors and phosphoinositide-generated second messengers. Annu Rev Biochem 54: 205–235 (1985).

    Article  PubMed  Google Scholar 

  47. Irvine RF, Letcher AJ, Dawson RMC: Phosphatidylinositol phosphodiesterase in higher plants. Biochem J 192: 279–283 (1980).

    PubMed  Google Scholar 

  48. Irvine RF, Letcher AJ, Heslop JP, Berridge MJ: The inositol tris/tetrakisphosphate pathway — demonstration of Ins(1,4,5)P3-3-kinase activity in animal tissues. Nature 320: 631–634 (1986).

    PubMed  Google Scholar 

  49. Irvine RF, Moor RM, Pollock WK, Smith PM, Wregett KA: Inositol phosphates: proliferation, metabolism and function. Phil Trans R Soc Lond B 320: 281–298 (1988).

    Google Scholar 

  50. Irvine RF, Letcher AJ, Lander DJ, Drøbak BK, Dawson AP, Musgrave A: Phosphatidylinositol (4,5) bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. Plant Physiol 89: 888–892 (1989).

    Google Scholar 

  51. Ji H, Sandberg K, Baukal AJ, Catt K: Metabolism of inositol pentakisphosphate to inositol hexakisphosphate in Xenopus laevis oocytes. J Biol Chem 264: 20185–20188 (1989).

    PubMed  Google Scholar 

  52. Jacobs M, Thelen MP, Farndale RW, Astle MC, Rubery PH: Specific guanine nucleotide binding by membranes from Cucurbita pepo seedlings. Biochem Biophys Res Commun 155: 1478–1484 (1988).

    PubMed  Google Scholar 

  53. Joseph SK, Esch T, Bonner WDJr: Hydrolysis of inositol phosphates by plant cell extracts. Biochem J 264: 851–856 (1989).

    PubMed  Google Scholar 

  54. Kikkawa U, Nishizuka Y: The role of protein kinase C in transmembrane signalling. Annu Rev Cell Biol 2: 149–178 (1986).

    Article  PubMed  Google Scholar 

  55. Koreh K, Monaco ME: The relationship of hormone-sensitive and hormone-insensitive phosphatidylinositol to phosphatidyl 4,5-bisphosphate in the WRK-1 cell. J Biol Chem 261: 88–91 (1986).

    PubMed  Google Scholar 

  56. Kurosaki F, Tsurusawa Y, Nishi A: Breakdown of phosphatidylinositol during the elicitation of phytoalexin production in cultured carrot cells. Plant Physiol 95: 601–604 (1987).

    Google Scholar 

  57. Lehle L, Ettlinger C: Phosphoinositides and cell cycle control in plants. In: Morré DJ, Boss WF, Loewus F (eds): Inositol Metabolism in Plants, pp. 221–220. Alan R. Liss, New York (1990).

    Google Scholar 

  58. Loewus FA, Dickinson DB: Cyclitols. In: Loewus FA, Tanner W (eds) Encyclopedia of Plant Physiology, New Series, Vol 13A, pp. 193–216. Springer, Berlin/Heidelberg/New York (1982).

    Google Scholar 

  59. Loewus FA, Loewus MW: Myo-inositol: Its biosynthesis and metabolism. Annu Rev Plant Physiol 34: 137–161 (1983).

    Article  Google Scholar 

  60. MacDonald ML, Mack KF, Williams BW, King WC, Glomset JA: A membrane bound diacylglycerol kinase that selectively phosphorylates arachidonoyl-diacylglycerol. J Biol Chem 263: 1584–1592 (1988).

    PubMed  Google Scholar 

  61. Maeda M, Thompson GAJr: On the mechanism of rapid plasma membrane and chloroplast expansion in Dunaliella salina exposed to hypoosmotic shock. J Cell Biol 102: 289–297 (1986).

    Article  PubMed  Google Scholar 

  62. Majerus PW, Connolly TM, Deckmyn H, Ross TS, Bross TE, Ishii H, Bansal VS, Wilson DB: The metabolism of phosphoinositide-derived messenger molecules. Science 234: 1519–1526 (1986).

    PubMed  Google Scholar 

  63. Martin JB, Foray MF, Klein G, Satre M: Identification of inositol hexaphosphate in 31P-NMR spectra of Dictyostelium discoideum amoebae. Relevance to intracellular pH determination. Biochim Biophys Acta 931: 16–25 (1987).

    Article  PubMed  Google Scholar 

  64. Maquenne L: Préparation, propriétés et constitution de l'inosite. C.r. hebd Séanc Acad Sci Paris 104: 225–227 (1987).

    Google Scholar 

  65. Maquenne L: Sur les propriétés de l'inosite. C.r. hebd Séanc Acad Sci Paris 104: 297–299 (1987).

    Google Scholar 

  66. McMurray WC, Irvine RF: Phosphatidylinositol 4,5-bisphosphate phosphodiesterase in higher plants. Biochem J 249: 877–881 (1988).

    PubMed  Google Scholar 

  67. Melin PM, Sommarin M, Sandelius AS, Jergil B: Identification of Ca2+ stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes. FEBS Lett 223: 87–91 (1987).

    Article  PubMed  Google Scholar 

  68. Memon A, Rincon M, Boss WF: Inositol trisphosphate metabolism in carrot (Daucus carota L.) cells. Plant Physiol 91: 477–480 (1989).

    Google Scholar 

  69. Moore AL, Ackerman KEO: Calcium and plant organelles. Plant Cell Environ 7: 423–429 (1984).

    Google Scholar 

  70. Morré DJ, Morré JT, Varnold RL: Phosphorylation of membrane-located proteins of soybean in vitro and response to auxin. Plant Physiol 75: 265–268 (1984).

    Google Scholar 

  71. Morse MJ, Crain RC, Satter RL: Phosphatidylinositol cycle metabolites in Samanea saman pulvini. Plant Physiol 83: 640–644 (1987).

    Google Scholar 

  72. Morse MJ, Crain RC, Satter RL: Light-stimulated phosphatidyl inositol turnover in Samanea saman pulvini. Proc Natl Acad Sci USA 84: 7075–7078 (1987).

    Google Scholar 

  73. Morse MJ, Crain RC, Coté GG, Satter RL: Light stimulated inositol phospholipid turnover in Samanea saman pulvini. Increased levels of diacylglycerol. Plant Physiol 89: 724–727 (1989).

    Google Scholar 

  74. Mudd JB: Phospholipid biosynthesis. In: Stumpf PK, Conn EE (eds) The Biochemistry of Plants: A Comprehensive Treatise, vol 4, pp. 249–282. Academic Press, New York (1980).

    Google Scholar 

  75. Müller E, Hegewald H, Jaroszewicz K, Cumme GA, Hoppe H, Frunder H: Turnover of phosphomonoester groups and compartmentation of polyphosphoinositides in human erythrocytes. Biochem J 235: 775–783 (1986).

    PubMed  Google Scholar 

  76. Murthy PPN, Renders JM, Keranen LM: Phosphoinositides in barley aleurone layers and gibberellic acid-induced changes in metabolism. Plant Physiol 91: 1266–1269 (1989).

    Google Scholar 

  77. Nishizuka Y: The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334: 661–665 (1988).

    Article  PubMed  Google Scholar 

  78. Olàh Z, Kiss Z: Occurrence of lipid and phorbol ester activated protein kinase in wheat cells. FEBS Lett 195: 33–37 (1986).

    Article  Google Scholar 

  79. Peeler TC, Stephenson MB, Einspahr KJ, Thomspon GAJr: Lipid characterization of an enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity. Plant Physiol 89: 970–976 (1989).

    Google Scholar 

  80. Pelech SV, Vance DE: Signal transduction via phosphatidylcholine cycles. TIBS 14: 28–30 (1989).

    Google Scholar 

  81. Pfaffmann H, Hartmann E, Brightman AO, Morré DJ: Phosphatidylinositol specific phospholipase C of plant stems: Membrane associated activity concentrated in plasma membranes. Plant Physiol 85: 1151–1155 (1987).

    Google Scholar 

  82. Rana RS, Kowluru A, MacDonald MJ: Secretagogue-responsive and unresponsive pools of phosphatidylinositol in pancreatic islets. Arch Biochem Biophys 245: 411–416 (1986).

    PubMed  Google Scholar 

  83. Ranjeva R, Boudet AM: Phosphorylation of proteins in plants: Regulatory effects and potential involvement in stimulus response coupling. Annu Rev Plant Physiol 38: 73–94 (1987).

    Google Scholar 

  84. Ranjeva R, Carrasco A, Boudet AM: Inositol trisphosphate stimulates the release of calcium from intact vacuoles isolated from Acer cells. FEBS Lett 230: 137–141 (1988).

    Article  Google Scholar 

  85. Reddy ASN, Poovaiah BW: Inositol 1,4,5-trisphosphate induced calcium release from corn coleoptile microsomes. J Biochem 101: 569–573 (1987).

    PubMed  Google Scholar 

  86. Rincon M, Boss WF: Myo-inositol trisphosphate mobilizes calcium from fusogenic carrot (Daucus carota L.) protoplasts. Plant Physiol 83: 395–398 (1987).

    Google Scholar 

  87. Rincon M, Chen Q, Boss WF: Characterization of inositol phosphates in carrot (Daucus carota L.) cells. Plant Physiol 89: 126–132 (1989).

    Google Scholar 

  88. Ross CA, Meldolesi J, Milner TA, Satoh T, Supattapone S, Snyder SH: Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339: 468–470 (1989).

    Article  PubMed  Google Scholar 

  89. Sandelius AS, Morré DJ: Characteristics of a phosphatidylinositol exchange activity of soybean microsomes. Plant Physiol 84: 1022–1027 (1987).

    Google Scholar 

  90. Sandelius AS, Sommarin M: Phosphorylation of phosphatidylinositols in isolated plant membranes. FEBS Lett 201: 282–286 (1986).

    Article  Google Scholar 

  91. Schäfer A, Bygrave F, Matzenauer S, Marmé D: Identification of a calcium- and phospholipid-dependent protein kinase in plant tissue. FEBS Lett 187: 25–28 (1985).

    Article  Google Scholar 

  92. Schumaker KS, Sze H: Calcium transport into the vacuole of oat roots: Characterization of H+/Ca2+ exchange activity. J Biol Chem 261: 12172–12178 (1986).

    PubMed  Google Scholar 

  93. Schumaker KS, Sze H: Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots. J Biol Chem 262: 3944–3946 (1987).

    PubMed  Google Scholar 

  94. Sommarin M, Sandelius AS: Phosphatidylinositol and phosphatidylinositol phosphate kinases in plant plasma membranes. Biochim Biophys Acta 958: 268–278 (1988).

    Google Scholar 

  95. Strasser H, Hoffmann C, Grisebach H, Matern U: Are polyphosphoinositides involved in signal transduction of elicitor-induced phytoalexin synthesis in cultured plant cells? Z Naturforsch [C] 41: 717–724 (1986).

    Google Scholar 

  96. Streb H, Irvine RF, Berridge MJ, Schulz I: Release of Ca2+ from a non-mitochrondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–69 (1983).

    PubMed  Google Scholar 

  97. Supattapone S, Worley PF, Baraban JM, Snyder SH: Solubilization, purification and characterization of an inositol trisphosphate receptor. J Biol Chem 263: 1530–1534 (1988).

    PubMed  Google Scholar 

  98. Taylor CW, Merritt JE: tReceptor coupling to polyphosphoinositide turnover: a parallel with adenylate cyclase system. Trends Pharmacol Sci 7: 238–242.

  99. Tilly BC, van Paridon PA, Verlaan I, Wirtz KWA, de Laat SW, Moolenaar WH: Inositol phosphate metabolism in bradykinin-stimulated human A431 carcinoma cells. Biochem J 244: 129–135 (1987).

    PubMed  Google Scholar 

  100. Traynor-Kaplan AE, Thompson BL, Harris AL, Taylor P, Omann GM, Sklar LA: Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J Biol Chem 264: 15668–15673 (1989).

    PubMed  Google Scholar 

  101. Tucker EB: Inositol bisphosphate and inositol trisphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs of Setcreasa purpurea. Planta 174: 358–363 (1988).

    Google Scholar 

  102. Vallejo M, Jackson T, Lightman S, Hanley MR: Occurrence and extracellular actions of inositol pentakis- and hexakisphosphate in mammalian brain. Nature 330: 656–658 (1987).

    Article  PubMed  Google Scholar 

  103. Volpe P, Krause KH, Hashimoto S, Zorzato F, Pozzan T, Meldolesi J, Lew DP: Calciosome, a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cell? Proc Natl Acad Sci USA 85: 1091–1095 (1988).

    PubMed  Google Scholar 

  104. Wheeler JJ, Boss WF: Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells. Plant Physiol 85: 389–392 (1987).

    Google Scholar 

  105. Whitman M, Cantley L: Phosphoinositide metabolism and the control of cell proliferation. Biochim Biophys Acta 948: 327–344 (1988).

    Article  Google Scholar 

  106. Wissing J, Heim S, Wagner KG: Diacylglycerol kinase from suspension cultured plant cells. Plant Physiol 90: 1546–1551 (1989).

    Google Scholar 

  107. Yamada K, Kanoli H: Occurrence of immunoreactive 80 kDa and non-immunoreactive diacylglycerol kinases in different pig tissues. Biochem J 255: 601–608 (1988).

    PubMed  Google Scholar 

  108. Yamada K, Sakane F, Kanoh H: Immunoquantitation of 80 kDa diacylglycerol kinase in pig and human lymphocytes and several other cells. FEBS Lett 244: 402–406 (1989).

    Article  PubMed  Google Scholar 

  109. Zbell B, Walter-Back C: Signal transduction of auxin on isolated plant cell membranes: Indications for a rapid polyphosphoinositide response stimulated by indoleacetic acid. J Plant Physiol 133: 353–360 (1988).

    Google Scholar 

  110. Zherelova OM: Protein kinase C is involved in regulation of Ca2+ channels in plasmalemma of Nitella syncarpa. FEBS Lett 242: 330–332 (1989).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehle, L. Phosphatidyl inositol metabolism and its role in signal transduction in growing plants. Plant Mol Biol 15, 647–658 (1990). https://doi.org/10.1007/BF00017839

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017839

Keywords

Navigation