Skip to main content

Properties and mode of action of cellulase

  • Conference paper
  • First Online:
Advances in Biochemical Engineering, Volume 17

Part of the book series: Advances in Biochemical Engineering ((ABE,volume 17))

Abstract

Native cellulose undergoing an attack by cellulase exhibits extensive changes in physical properties prior to producing a measurable quantity of reducing sugar. These changes include fragmentation, swelling, considerable loss in tensile strength, transverse cracking, and lowering of the degree of polymerization. Fragmentation and swelling of cellulose fibers are characteristic of purified C x enzyme action rather than C 1, action.

Reese and his co-workers (1950) first suggested a mechanism for the enzymatic breakdown of cellulose which involves a C 1 component. They postulated that the conversion of native cellulase was a two-step process: C 1 “activates” or desaggregates the cellulose chains, and the enzyme classified as C x then carries out the hydrolysis reaction. Early research mostly related to studies of the C x component. Since 1964, an extensive search for the C 1 component has been carried out, and substantial evidence was found to support the existence of a C 1-like components. Several investigators have supported the concept that the C 1 component has a nonhydrolytic function. However, based on the results of recent fractionation studies, it has been suggested that the (C 1C x) concept be re-evaluated and that the mechanism of cellulase action be reformulated. The evidence cited by the various authors to support the claim that C 1 is a cellobiohydrolase appears to be convincing. Nevertheless, there remain striking differences in the extent to which highly ordered cellulose is hydrolyzed by the various C 1-type components. The enzyme system of Trichoderma sp. has been examined more extensively than other enzyme systems. The mode of action of each component of this cellulase is shown graphically in Fig. 3 and can be summarized as follows:

Endo-β-1,4-glucanase. This contains several components with varying degrees of randomness. One of these may be the enzyme that acts on crystalline cellulose; however, it acts randomly, mainly on CMC, phosphoric acid-swollen cellulose, and cellodextrin. This component does not act on cellobiose. The main products are cellobiose and cellotriose.

Exo-β-1,4-glucanases. This is present in several forms. β-l,4-Glucan glucohydrolase removes a single glucose unit from the nonreducing end of the chain. This enzyme acts on Walseth, CMC, and cellodextrin chains of four to seven units produced by the action of the endo-glucanase but attacks insoluble cellulose with difficulty. This component has rarely been reported. β-1,4-Glucan cellobiohydrolase (CBH) removes a cellobiose unit from the nonreducing ends of the chain. The CBH is currently being equated with the classical C1 enzyme by many investigators. This component has the greatest affinity for cellulose; it can not attack CMC and acts very slowly on H3PO4-swollen cellulose. Although it is unable to attack crystalline cellulose to any significant extent, it can degrade cellulose substrates by successively removing cellobiose residues from the chain ends. When CBH is recombined with Cx and β-glucosidase. it plays a major role in hydrolysis of cotton or Avicel-like crystalline cellulose.

β-Glucosidase. This hydrolyzes cellobiose and short chain cellooligosaccharides to glucose but has no effect on cellulose. While it rapidly hydrolyzes cellobiose and cellotriose, its rate of attack decreases markedly with an increasing degree of polymerization. This is in contrast to exo-β-1,4 glucanas, which acts preferentially on longer cellooligosaccharides.

The physical properties of each cellulase component, such as the molecular weight, the diffusion coefficient, the sedimentation constant, and the molecular size and shape, have been described herein. The molecular weight of the C 1 component from Trichoderma sp. lies in the range of 53,000 to 62,000. The endo-β-l,4-glucanases show considerable variation in molecular weights, ranging from 5,300 to 55,000. Exo-glucanase and β-glucosidase are reported to have molecular weights of 50,000 to 76,000. The molecular weight of β-1,4-glucan cellobiohydrolase was measured at about 42,000. If the cellulase molecules are spherical, their size would range from about 25 to 80 Å in diameter with an average of 60 Å. If the enzymes are ellipsoids with an axial ratio of about 6, their sizes would range from about 15 to 40 Å in width and from 80 to 250 Å in length, giving rise to an average size of 35 Å×200 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Ahlgren, E., Ericksson, K. E.: Acta Chem. Scand. 21, 1193 (1969)

    Google Scholar 

  2. Almin, K. E., Ericksson, K. E., Pettersson, B.: Eur. J. Biochem. 51, 207 (1975)

    Article  PubMed  Google Scholar 

  3. Bailey, M., Enari, T. M., Linko, M. (eds.): Proc Symp. Enz. Hydrol. Cellulose. Helsinki: SITRA 1975

    Google Scholar 

  4. Barras, D. R., Moore, A. E., Stone, B. A.: Adv. Chem. Ser. (ACS), 95, 105 (1969)

    Google Scholar 

  5. Berghem, L. E. R., Pettersson, L. G.: Eur. J. Biochem. 27, 21 (1973)

    Article  Google Scholar 

  6. Bergham, L. E. R., Pettersson, L. G., Axiö-Fredricksson, U. B.: Eur. J. Biochem. 53, 55 (1975)

    Article  Google Scholar 

  7. Berghem, L. E. R., Pettersson, L. G., Axiö-Fredricksson, U. B.: Eur. J. Biochem. 61, 621 (1976)

    Article  PubMed  Google Scholar 

  8. Cowling, E. B.: In: Biotech. Bioeng. Symp. No. 5, Wilke, C. R. (Ed.), p. 163. New York: Interscience 1975

    Google Scholar 

  9. Dellweg, H. (Ed.): Proc. V. Int. Ferment. Symp., Berlin 1976

    Google Scholar 

  10. Emert, G. H. et al.: Adv. Chem. Ser. (ACS) 136, 79 (1974)

    Google Scholar 

  11. Eriksson, K. E.: In: Proc. Symp. Enz. Hydrol. Cellulose. Bailey, M., Enari, T. M., Linko, M. (Eds.), p. 263. Helsinki: SITRA 1975

    Google Scholar 

  12. Eriksson, K. E., Pettersson, B.: Eur. J. Biochem. 51, 193 (1975a)

    Article  PubMed  Google Scholar 

  13. Eriksson, K. E., Pettersson, B.: Eur. J. Biochem. 51, 213 (1975b)

    PubMed  Google Scholar 

  14. Eriksson, K. E., Rzedowski, W.: Arch. Biochem. Biophys. 129, 689 (1969)

    PubMed  Google Scholar 

  15. Fan, L. T., Lee, Y. H., Beardmore, D. H.: In: Adv. Biochem. Eng. 14, Fiechter A (Ed.), Berlin: Springer 1980, p. 101

    Google Scholar 

  16. Gaden, Jr., E. L. et al. (Eds.): Biotech. Bioeng. Symp. No. 5. New York: Interscience 1976

    Google Scholar 

  17. Gascoigne, J. A., Gascoigne, M. M.: Biological Degradation of Cellulose. London: Butter-worths 1960

    Google Scholar 

  18. Gascoigne, J. A., Gascoigne, M. M.: In: Biological Degradation of Cellulose. p. 204. London: Butterworths 1960

    Google Scholar 

  19. Gilligan, W., Reese, E. T.: Canad. J. Microbiol. 1, 90 (1954)

    Google Scholar 

  20. Gong, C. S., Ladisch, M. R., Tsao, G. T.: Biotech. Bioeng. 19, 959 (1977)

    Article  Google Scholar 

  21. Gum, Jr., E. K., Brown, Jr. R. D.: Biochem. Biophys. Acta, 446, 371 (1976)

    PubMed  Google Scholar 

  22. Hajny, G. J., Reese, E. T. (Eds.): Adv. Chem. Ser. (ACS) 95, Washington, D.C. ACS, 1969

    Google Scholar 

  23. Halliwell, G.: Biochem. J. 95, 270 (1965)

    PubMed  Google Scholar 

  24. Halliwell, G., Griffin, M.: Biochem. J. 135, 587 (1973)

    PubMed  Google Scholar 

  25. Halliwell, G., Griffin, M.: Biochem. Soc. Trans. 2, 497 (1974)

    Google Scholar 

  26. Halliwell, G., Riaz, M.: Biochem. J. 116, 35 (1970)

    PubMed  Google Scholar 

  27. Halliwell, G., Riaz, M.: Arch. Mikrobiol. 78, 295 (1971)

    Article  PubMed  Google Scholar 

  28. Hash, J. H., King, K. W.: J. Biol. Chem. 232, 381 (1958)

    PubMed  Google Scholar 

  29. Iwasaki, Y. Hayashi, K., Funatsu, M.: J. Biochem. 55, 209 (1964)

    PubMed  Google Scholar 

  30. Kanda, T., Wakabayashi, K., Nisizawa, K.: J. Biochem. 79, 977 (1976a)

    PubMed  Google Scholar 

  31. Kanda, T., Wakabayashi, K., Nisizawa, K.: J. Biochem. 79, 997 (1976b)

    PubMed  Google Scholar 

  32. Karrer, P., Schubert, P., Wehri, W.: Helv. Chim. Acta, 8, 797 (1925)

    Google Scholar 

  33. King, K. W.: In: Advances in Enzymic Hydrolysis of Cellulose and Related Materials. Reese, E. T. (Ed.), p. 159. New York: Pergamon 1963

    Google Scholar 

  34. King, K. W.: J. Ferment. Technol. 43, 79 (1965)

    Google Scholar 

  35. King, K. W.: Biochem. Biophys. Res. Commun. 24, 295 (1966)

    Article  PubMed  Google Scholar 

  36. King, K. W., Vessal, M. I.: Adv. Chem. Ser. (ACS) 95, 7 (1969)

    Google Scholar 

  37. Kooiman, P., Roelofsen. P. A. Sweeris, S.: Enzymologia, 16, 237 (1953)

    PubMed  Google Scholar 

  38. Krässig, J., Kitchen, W.: J. Polymer Sci. 51, 123 (1961)

    Google Scholar 

  39. Laurent, T. C, Killander, J.: J. Chromatography, 14, 317 (1964)

    Google Scholar 

  40. Li, L. H., Flora, R. M., King, K. W.: Arch. Biochem. Biophys. 111, 439 (1965)

    Article  PubMed  Google Scholar 

  41. Liu, T. H., King, K. W.: Arch. Biochem. Biophys. 120, 462 (1967)

    PubMed  Google Scholar 

  42. Mandels, M., Reese, E. T.: Develop. Indust. Microbiol. 5, 5 (1964)

    Google Scholar 

  43. Marsh, C. A.: Biochem. Biophys. Acta, 122, 367 (1966)

    PubMed  Google Scholar 

  44. Marsh, P. B.: Text. Res. J. 27, 913 (1957)

    Google Scholar 

  45. Marsh, P. B., Merola, G. V., Simpson, M. E.: Text. Res. J. 23, 831 (1953)

    Google Scholar 

  46. Nisizawa, K.: J. Ferment. Technol. 51, 267 (1973)

    Google Scholar 

  47. Nisizawa, K., Hashimoto, Y., Shibata, T.: In: Advances in Enzymic Hydrolysis of Cellulose and Related Materials. Reese, E. T. (Ed.). New York: Pergamon 1963, p. 171

    Google Scholar 

  48. Nisizawa, K., Kobayashi, T.: J. Agr. Chem. Soc. Japan, 27, 239 (1953a)

    Google Scholar 

  49. Nisizawa, K., Kobayashi, T.: J. Agr. Chem. Soc. Japan, 27, 241 (1953b)

    Google Scholar 

  50. Nisizawa, K. et al.: Arch. Biochem. Biophys. 96, 152 (1962)

    PubMed  Google Scholar 

  51. Nisizawa, T., Suzuki, H., Nisizawa, K.: J. Ferment. Technol. 44, 659 (1966)

    Google Scholar 

  52. Nisizawa, K. et al.: In: Proc. IV Int. Ferment. Symp. Terui, G. (Ed.). Osaka 1972, p. 719

    Google Scholar 

  53. Niwa, T., Kawamura, K., Nisizawa, K.: J. Ferment. Technol. 43, 286 (1965)

    Google Scholar 

  54. Niwa, T. et al.: J. Ferment. Technol. 42, 124 (1964)

    Google Scholar 

  55. Norkrans, B.: Ann. Rev. Phytopathology, 1, 325 (1963)

    Article  Google Scholar 

  56. Ogawa, K., Toyama, N.: J. Ferment. Technol. 42, 199 (1964)

    Google Scholar 

  57. Ogawa, K., Toyama, N.: J. Ferment. Technol. 44, 741 (1966)

    Google Scholar 

  58. Ogawa, K., Toyama, N.: J. Ferment. Technol. 45, 671 (1967)

    Google Scholar 

  59. Ogawa, K., Toyama, N.: J. Ferment. Technol. 46, 367 (1968)

    Google Scholar 

  60. Ogawa, K., Toyama, N.: J. Ferment. Technol. 50, 236 (1972)

    Google Scholar 

  61. Ogiwara, Y., Arai, K.: J. Japan. Tech. Assoc. Pulp. Paper Ind. 21, 209 (1967)

    Google Scholar 

  62. Okada, G.: J. Biochem. 77, 33 (1975)

    PubMed  Google Scholar 

  63. Okada, G.: J. Biochem. 80, 913 (1976)

    PubMed  Google Scholar 

  64. Okada, G., Nisizawa, K.: J. Biochem. 78, 297 (1975)

    PubMed  Google Scholar 

  65. Okada, G., Nisizawa, K., Suzuki, H.: J. Biochem. 63, 591 (1968)

    PubMed  Google Scholar 

  66. Okada, G. et al.: J. Ferment. Technol. 44, 682 (1966)

    Google Scholar 

  67. Pettersson, G.: Arch. Biochem. Biophys. 123, 307 (1968)

    PubMed  Google Scholar 

  68. Pettersson, G., Cowling, E. B., Porath, J.: Biochim. Biophys. Acta, 67, 1 (1963)

    Article  PubMed  Google Scholar 

  69. Pettersson, G., Eaker, D. L.: Arch. Biochem. Biophys. 124, 154 (1968)

    PubMed  Google Scholar 

  70. Pettersson, G., Porath, J.: Biochim. Biophys. Acta, 67, 9 (1963)

    PubMed  Google Scholar 

  71. Pettersson, G., Porath, J.: Methods in Enzymol. 8, 603 (1966)

    Google Scholar 

  72. Pettersson, L. G.: In: Proc. Symp. Enz. Hydrol. Cellulose. Bailey, M., Enari, T. M., Linko, M. (Eds.), p. 255. Helsinki: SITRA 1975

    Google Scholar 

  73. Pettersson, L. G., Axiö-Fredriksson, U. B., Berghem, L. E. R.: In: Proc. IV Int. Ferment. Symp. Terui, G. (Ed.), p. 723. Osaka 1972

    Google Scholar 

  74. Rautela, G. S., King, K. W.: Arch. Biochem. Biophys. 123, 589 (1968)

    PubMed  Google Scholar 

  75. Ray, D. L. (Ed.): Marine Boring and Fouling Organisms. Seattle: University of Washington Press 1959

    Google Scholar 

  76. Reese, E. T.: Appl. Microbiol. 4, 39 (1956)

    PubMed  Google Scholar 

  77. Reese, E. T. (Ed.): Advances in Enzymic Hydrolysis of Cellulose and Related Materials. New York: Pergamon 1963

    Google Scholar 

  78. Reese, E. T.: J. Ferment. Technol. 43, 62 (1965)

    Google Scholar 

  79. Reese, E. T.: Adv. Chem. Ser. (ACS) 95, 26 (1969)

    Google Scholar 

  80. Reese, E. T.: Biotechnol. Bioeng. Symp. No. 5, 77 (1975)

    Google Scholar 

  81. Reese, E. T., Gilligan, W.: Text. Res. J. 24, 663 (1954)

    Google Scholar 

  82. Reese, E. T., Maguire, A. G., Parrish, F. W.: Canad. J. Biochem. 46, 25 (1969)

    Google Scholar 

  83. Reese, E. T., Mandels, M.: In: Series on High Polymers, Vol. 5, p. 1079. Bikales, N. M., Segal, L. (Eds.). New York: John Wiley 1971

    Google Scholar 

  84. Reese, E. T., Siu, R. G. H., Levinson, H. S.: J. Bacteriol. 59, 485 (1950)

    PubMed  Google Scholar 

  85. Selby, K.: In: Advances in Enzymic Hydrolysis of Cellulose and Related Materials. Reese, E. T. (Ed.). New York: Pergamon 1963, p. 33

    Google Scholar 

  86. Selby, K.: In: Biodeterioration of Materials. Walters, A. H., Elphick, J. J. (Eds.), p. 62. Amsterdam: Elsevier 1968

    Google Scholar 

  87. Selby, K.: Adv. Chem. Ser. (ACS) 95, 34 (1969)

    Google Scholar 

  88. Selby, K., Maitland, C. C: Biochem. J. 94, 578 (1965)

    PubMed  Google Scholar 

  89. Selby, K., Maitland, C. C: Biochem. J. 104, 716 (1967)

    PubMed  Google Scholar 

  90. Siu, R. G. H.: Microbial Decomposition of Cellulose. New York: Reinhold Pub. 1951

    Google Scholar 

  91. Storvick, W. O., Cole, F. E., King, K. W.: Biochem. 2, 1106 (1963)

    Article  Google Scholar 

  92. Storvick, W. O., King, K. W.: J. Biol. Chem. 235, 301 (1960)

    Google Scholar 

  93. Suga, K.. van Dedem, G., Moo-Young, M.: Biotechnol. Bioeng. 17, 433 (1975)

    Article  Google Scholar 

  94. Suzuki, H., Yamane, K., Nisizawa, K.: Adv. Chem. Ser. (ACS) 95, 60 (1969)

    Google Scholar 

  95. Tanford, C: Physical Chemistry of Macromolecules. p. 317. New York: Wiley 1961

    Google Scholar 

  96. Terui, G. (Ed.): Proc. IV. Int. Ferment. Symp., Osaka 1972

    Google Scholar 

  97. Toda, S., Suzuki, H., Nisizawa, K.: J. Ferment. Technol. 46, 711 (1968)

    Google Scholar 

  98. Tomita, Y., Suzuki, H., Nisizawa, K.: J. Ferment. Technol. 46, 701 (1968)

    Google Scholar 

  99. Tomita, Y., Suzuki, H., Nisizawa, K.: J. Ferment. Technol. 52, 233 (1974)

    Google Scholar 

  100. Toyama, N., Ogawa, K.: J. Ferment. Technol. 44, 741 (1966)

    Google Scholar 

  101. Walseth, C. S.: TAPPI, 35, 228 (1952)

    Google Scholar 

  102. Walters, A. H., Elphick, J. J. (Eds.): Biodeterioration of Materials. New York: Elsevier 1968

    Google Scholar 

  103. Watanabe, T.: J. Ferment. Technol. 46, 299 (1968a)

    Google Scholar 

  104. Watanabe, T.: J. Ferment. Technol. 46, 303 (1968b)

    Google Scholar 

  105. Whitaker, D. R.: Arch. Biochem. Biophys. 43, 253 (1953)

    Article  PubMed  Google Scholar 

  106. Whitaker, D. R.: Canad. J. Biochem. Physiol. 34, 489 (1956)

    Google Scholar 

  107. Whitaker, D. R.: Canad. J. Biochem. Physiol. 35, 733 (1957)

    PubMed  Google Scholar 

  108. Whitaker, D. R.: In: Marine Boring and Fouling Organisms. Ray, D. L. (Ed.), p. 301. Seattle: University of Washington Press 1959

    Google Scholar 

  109. Whitaker, D. R., Colvin, J. R., Cook, W. H.: Arch. Biochem. Biophys. 49, 257 (1954)

    Article  PubMed  Google Scholar 

  110. Whitaker, D. R., Hanson, K. R., Datta, P. K.: J. Biochem. Physiol. 41, 671 (1963)

    Google Scholar 

  111. Wilke, C. R. (Ed.): Biotech. Bioeng. Symp. No. 5. New York: Interscience 1975

    Google Scholar 

  112. Wood, T. M.: Biochem. J. 109, 217 (1968)

    PubMed  Google Scholar 

  113. Wood, T. M.: Biochem. J. 115, 457 (1969)

    PubMed  Google Scholar 

  114. Wood, T. M.: Biochim. Biophys. Acta, 192, 531 (1969)

    PubMed  Google Scholar 

  115. Wood, T. M.: Biochem. J. 121, 353 (1971)

    PubMed  Google Scholar 

  116. Wood, T. M.: In: Proc. IV Int. Ferment Symp. Terui, G. (Ed.), p. 711. Osaka 1972

    Google Scholar 

  117. Wood, T. M.: Biotech. Bioeng. Symp. No. 5, 111 (1975)

    Google Scholar 

  118. Wood, T. M., McCrae, S. I.: Biochem. J. 128, 1183 (1972)

    PubMed  Google Scholar 

  119. Wood, T. M., McCrae, S. L: In: Proc. Symp. Enz. Hydrol. Cellulose. Bailey, M., Enari, T. M., Linko, H. (Eds.), p. 231. Finland: Aulanko 1975

    Google Scholar 

  120. Wood, T. M., McCrae, S. I.: Carbohydrate Research, 57, 117 (1977)

    PubMed  Google Scholar 

  121. Youatt, G.: Text. Res. J. 32, 158 (1962)

    Google Scholar 

  122. Youatt, G., Jermyn, M. A.: In: Marine Boring and Fouling Organisms. Ray, D. L. (Ed.), p. 397. Seattle: University of Washington Press 1959

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Lee, YH., Fan, L.T. (1980). Properties and mode of action of cellulase. In: Advances in Biochemical Engineering, Volume 17. Advances in Biochemical Engineering, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09955-7_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-09955-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09955-0

  • Online ISBN: 978-3-540-39160-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics