Skip to main content

Reduced Normal Tissue Doses Through Advanced Technology

  • Chapter
  • First Online:
Re-Irradiation: New Frontiers

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1310 Accesses

Abstract

Re-irradiation is probably the most challenging situation in radiotherapy because the radiation tolerance of the normal tissue is significantly reduced compared with the first treatment series. Results with traditional radiotherapy techniques have been disappointing because of the poor conformality of the dose distributions: radiation doses were either insufficiently low resulting in poor rates of tumor control or substantial toxicity was the consequence of high-dose re-irradiation. This chapter will focus on modern techniques of radiation treatment planning and delivery, which make improved sparing of the normal tissue possible. All techniques will be discussed in the context of re-irradiation and theoretical and clinical data supporting the use of these technologies will be presented. Palliative reirradiation to moderate doses might be feasible without using advanced technology. However, under many circumstances 2D or 3D conformal approaches cannot fulfill the required normal tissue constraints. The present chapter discusses the advantages and challenges associated with more complex planning and delivery methods.

The original version of this chapter was revised. An erratum to this chapter can be found at 10.1007/978-3-319-41825-4_78.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literature

  • Ang KK et al (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50(4):1013–1020

    Article  CAS  PubMed  Google Scholar 

  • Barker JL Jr et al (2004) Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys 59(4):960–970

    Article  PubMed  Google Scholar 

  • Biagioli MC et al (2007) Intensity-modulated radiotherapy with concurrent chemotherapy for previously irradiated, recurrent head and neck cancer. Int J Radiat Oncol Biol Phys 69(4):1067–1073

    Article  PubMed  Google Scholar 

  • Bortfeld T, Webb S (2009) Single-arc IMRT? Phys Med Biol 54(1):N9–N20

    Article  PubMed  Google Scholar 

  • Brandner ED et al (2006) Abdominal organ motion measured using 4D CT. Int J Radiat Oncol Biol Phys 65(2):554–560

    Article  PubMed  Google Scholar 

  • Bzdusek K et al (2009) Development and evaluation of an efficient approach to volumetric arc therapy planning. Med Phys 36(6):2328–2339

    Article  PubMed  Google Scholar 

  • Chan C et al (2014) Intensity-modulated radiotherapy for lung cancer: current status and future developments. J Thorac Oncol 9(11):1598–1608

    Article  PubMed  Google Scholar 

  • Chao KS et al (2000) Intensity-modulated radiation therapy in head and neck cancers: the Mallinckrodt experience. Int J Cancer 90(2):92–103

    Article  CAS  PubMed  Google Scholar 

  • Chen T et al (2014) Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management. Radiother Oncol 112(3):365–370

    Article  PubMed  Google Scholar 

  • Combs SE et al (2008) Radiochemotherapy with temozolomide as re-irradiation using high precision fractionated stereotactic radiotherapy (FSRT) in patients with recurrent gliomas. J Neurooncol 89(2):205–210

    Article  PubMed  Google Scholar 

  • Cuneo KC et al (2012) Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 82(5):2018–2024

    Article  CAS  PubMed  Google Scholar 

  • Dearnaley DP et al (1999) Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 353(9149):267–272

    Article  CAS  PubMed  Google Scholar 

  • Deodato F et al (2009) Stereotactic radiotherapy in recurrent gynecological cancer: a case series. Oncol Rep 22(2):415–419

    PubMed  Google Scholar 

  • Depuydt T et al (2014) Treating patients with real-time tumor tracking using the Vero gimbaled linac system: implementation and first review. Radiother Oncol 112(3):343–351

    Article  PubMed  Google Scholar 

  • Dresen RC et al (2010) Absence of tumor invasion into pelvic structures in locally recurrent rectal cancer: prediction with preoperative MR imaging. Radiology 256(1):143–150

    Article  PubMed  Google Scholar 

  • Duprez F et al (2009) Intensity-modulated radiotherapy for recurrent and second primary head and neck cancer in previously irradiated territory. Radiother Oncol 93(3):563–569

    Article  PubMed  Google Scholar 

  • Ehrbar S et al (2016) Three-dimensional versus four-dimensional dose calculation for volumetric modulated arc therapy of hypofractionated treatments. Z Med Phys 26(1):45–53

    Article  PubMed  Google Scholar 

  • Engelsman M et al (2005) How much margin reduction is possible through gating or breath hold? Phys Med Biol 50(3):477–490

    Article  CAS  PubMed  Google Scholar 

  • Even-Sapir E et al (2004) Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology 232(3):815–822

    Article  PubMed  Google Scholar 

  • Fearon K et al (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12(5):489–495

    Article  PubMed  Google Scholar 

  • Fiorino C et al (2008) Evidence of limited motion of the prostate by carefully emptying the rectum as assessed by daily MVCT image guidance with helical tomotherapy. Int J Radiat Oncol Biol Phys 71(2):611–617

    Article  PubMed  Google Scholar 

  • Fuss M et al (2004) Repositioning accuracy of a commercially available double-vacuum whole body immobilization system for stereotactic body radiation therapy. Technol Cancer Res Treat 3(1):59–67

    Article  PubMed  Google Scholar 

  • Goitein M (2010) Trials and tribulations in charged particle radiotherapy. Radiother Oncol 95(1):23–31

    Article  PubMed  Google Scholar 

  • Gollub MJ et al (2013) Prognostic aspects of DCE-MRI in recurrent rectal cancer. Eur Radiol 23(12):3336–3344

    Article  CAS  PubMed  Google Scholar 

  • Grosu AL et al (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63(2):511–519

    Article  CAS  PubMed  Google Scholar 

  • Guckenberger M et al (2006) Cone-beam CT based image-guidance for extracranial stereotactic radiotherapy of intrapulmonary tumors. Acta Oncol 45(7):897–906

    Article  PubMed  Google Scholar 

  • Guckenberger M et al (2007a) Precision required for dose-escalated treatment of spinal metastases and implications for image-guided radiation therapy (IGRT). Radiother Oncol 84(1):56–63

    Article  PubMed  Google Scholar 

  • Guckenberger M et al (2007b) Reliability of the bony anatomy in image-guided stereotactic radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys 69(1):294–301

    Article  PubMed  Google Scholar 

  • Guckenberger M et al (2009a) Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol 93(2):259–265

    Article  PubMed  Google Scholar 

  • Guckenberger M et al (2009b) Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy. Radiother Oncol 91(3):288–295

    Article  PubMed  Google Scholar 

  • Guckenberger M et al (2010) Stereotactic body radiotherapy for local boost irradiation in unfavourable locally recurrent gynaecological cancer. Radiother Oncol 94(1):53–59

    Article  PubMed  Google Scholar 

  • Guckenberger M et al (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190(1):26–33

    Article  CAS  PubMed  Google Scholar 

  • Gutin PH et al (2009) Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 75(1):156–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haertl PM et al (2013) Frameless fractionated stereotactic radiation therapy of intracranial lesions: impact of cone beam CT based setup correction on dose distribution. Radiat Oncol 8:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto T et al (2006) Repeated proton beam therapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 65(1):196–202

    Article  PubMed  Google Scholar 

  • Hatakeyama T et al (2008) 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 35(11):2009–2017

    Article  CAS  PubMed  Google Scholar 

  • Heron DE et al (2009) Stereotactic body radiotherapy for recurrent squamous cell carcinoma of the head and neck: results of a phase I dose-escalation trial. Int J Radiat Oncol Biol Phys 75(5):1493–1500

    Article  PubMed  Google Scholar 

  • Hurkmans CW et al (2001) Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 58(2):105–120

    Article  CAS  PubMed  Google Scholar 

  • ICRU (1993) International commission on radiation units and measurements: prescribing, recording and reporting photon beam therapy, report 50. ICRU, Bethesda

    Google Scholar 

  • ICRU (1999) International commission on radiation units and measurements: prescribing, recording and reporting photon beam therapy, report 62. ICRU, Bethesda

    Google Scholar 

  • Ito K et al (1992) Recurrent rectal cancer and scar: differentiation with PET and MR imaging. Radiology 182(2):549–552

    Article  CAS  PubMed  Google Scholar 

  • Jingu K et al (2010) Focal dose escalation using FDG-PET-guided intensity-modulated radiation therapy boost for postoperative local recurrent rectal cancer: a planning study with comparison of DVH and NTCP. BMC Cancer 10:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Jumeau R et al (2015) Optimization of reirradiation using deformable registration. Int J Radiat Oncol Biol Phys 93(3):E599

    Article  Google Scholar 

  • Keall PJ et al (2006) Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system. Int J Radiat Oncol Biol Phys 65(5):1579–1584

    Article  PubMed  Google Scholar 

  • Keall PJ et al (2014) The first clinical implementation of electromagnetic transponder-guided MLC tracking. Med Phys 41(2):020702

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly P et al (2010) Stereotactic body radiation therapy for patients with lung cancer previously treated with thoracic radiation. Int J Radiat Oncol Biol Phys 78(5):1387–1393

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilburn JM et al (2014) Thoracic re-irradiation using stereotactic body radiotherapy (SBRT) techniques as first or second course of treatment. Radiother Oncol 110(3):505–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong DS et al (2008) Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 112(9):2046–2051

    Article  PubMed  Google Scholar 

  • Korreman SS, Juhler-Nottrup T, Boyer AL (2008) Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance. Radiother Oncol 86(1):61–68

    Article  PubMed  Google Scholar 

  • Kupelian PA et al (2005) Serial megavoltage CT imaging during external beam radiotherapy for non-small-cell lung cancer: observations on tumor regression during treatment. Int J Radiat Oncol Biol Phys 63(4):1024–1028

    Article  PubMed  Google Scholar 

  • Lang S et al (2014) Development and evaluation of a prototype tracking system using the treatment couch. Med Phys 41(2):021720

    Article  PubMed  Google Scholar 

  • Lax I et al (1994) Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol 33(6):677–683

    Article  CAS  PubMed  Google Scholar 

  • Lebesque JV, Keus RB (1991) The simultaneous boost technique: the concept of relative normalized total dose. Radiother Oncol 22(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Lee JK et al (1981) CT appearance of the pelvis after abdomino-perineal resection for rectal carcinoma. Radiology 141(3):737–741

    Article  CAS  PubMed  Google Scholar 

  • Lee N et al (2007) Salvage re-irradiation for recurrent head and neck cancer. Int J Radiat Oncol Biol Phys 68(3):731–740

    Article  PubMed  Google Scholar 

  • Lee IH et al (2009) Association of 11C-methionine PET uptake with site of failure after concurrent temozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 73(2):479–485

    Article  CAS  PubMed  Google Scholar 

  • Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102(4):316–319

    CAS  PubMed  Google Scholar 

  • Leksell L (1968) Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand 134(8):585–595

    CAS  PubMed  Google Scholar 

  • Liang J et al (2015) Trajectory modulated arc therapy: a fully dynamic delivery with synchronized couch and gantry motion significantly improves dosimetric indices correlated with poor cosmesis in accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys 92(5):1148–1156

    Article  PubMed  Google Scholar 

  • Lin R et al (1999) Nasopharyngeal carcinoma: repeat treatment with conformal proton therapy – dose-volume histogram analysis. Radiology 213(2):489–494

    Article  CAS  PubMed  Google Scholar 

  • Loeffler JS et al (1990) The treatment of recurrent brain metastases with stereotactic radiosurgery. J Clin Oncol 8(4):576–582

    Article  CAS  PubMed  Google Scholar 

  • Maciejewski B, Taylor JM, Withers HR (1986) Alpha/beta value and the importance of size of dose per fraction for late complications in the supraglottic larynx. Radiother Oncol 7(4):323–326

    Article  CAS  PubMed  Google Scholar 

  • Mackie TR et al (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20(6):1709–1719

    Article  CAS  PubMed  Google Scholar 

  • Mahan SL et al (2005) Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis. Int J Radiat Oncol Biol Phys 63(5):1576–1583

    Article  PubMed  Google Scholar 

  • Mantel F, Flentje M, Guckenberger M (2013) Stereotactic body radiation therapy in the re-irradiation situation – a review. Radiat Oncol 8:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Marks LB, Ten Haken RK, Martel MK (2010) Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys 76(3 Suppl):S1–S2

    Article  PubMed  Google Scholar 

  • Marnitz S et al (2015) Which technique for radiation is most beneficial for patients with locally advanced cervical cancer? Intensity modulated proton therapy versus intensity modulated photon treatment, helical tomotherapy and volumetric arc therapy for primary radiation – an intraindividual comparison. Radiat Oncol 10:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Marucci L et al (2006) Conservation treatment of the eye: conformal proton reirradiation for recurrent uveal melanoma. Int J Radiat Oncol Biol Phys 64(4):1018–1022

    Article  PubMed  Google Scholar 

  • Mayr NA et al (2006) Serial therapy-induced changes in tumor shape in cervical cancer and their impact on assessing tumor volume and treatment response. AJR Am J Roentgenol 187(1):65–72

    Article  PubMed  Google Scholar 

  • Meerwein CM et al (2015) Post-treatment surveillance of head and neck cancer: pitfalls in the interpretation of FDG PET-CT/MRI. Swiss Med Wkly 145:w14116

    PubMed  Google Scholar 

  • Milker-Zabel S et al (2003) Clinical results of retreatment of vertebral bone metastases by stereotactic conformal radiotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 55(1):162–167

    Article  PubMed  Google Scholar 

  • Minniti G et al (2016) Repeated stereotactic radiosurgery for patients with progressive brain metastases. J Neurooncol 126(1):91–97

    Article  PubMed  Google Scholar 

  • Munck Af Rosenschold P et al (2015) Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro Oncol 17(5):757–763

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K et al (2014) Recent advances in radiation oncology: intensity-modulated radiotherapy, a clinical perspective. Int J Clin Oncol 19(4):564–569

    Article  CAS  PubMed  Google Scholar 

  • Nieder C et al (2006) Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys 66(5):1446–1449

    Article  PubMed  Google Scholar 

  • Niyazi M et al (2012) Re-irradiation in recurrent malignant glioma: prognostic value of [18F]FET-PET. J Neurooncol 110(3):389–395

    Article  CAS  PubMed  Google Scholar 

  • Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310–317

    Article  PubMed  Google Scholar 

  • Palmer J et al (2014) Motion of the esophagus due to cardiac motion. PLoS One 9(2):e89126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pauleit D et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128(Pt 3):678–687

    Article  PubMed  Google Scholar 

  • Plastaras JP, Berman AT, Freedman GM (2014) Special cases for proton beam radiotherapy: re-irradiation, lymphoma, and breast cancer. Semin Oncol 41(6):807–819

    Article  PubMed  Google Scholar 

  • Polat B et al (2008) Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer. Strahlenther Onkol 184(12):668–673

    Article  PubMed  Google Scholar 

  • Poltinnikov IM et al (2005) Combination of longitudinal and circumferential three-dimensional esophageal dose distribution predicts acute esophagitis in hypofractionated reirradiation of patients with non-small-cell lung cancer treated in stereotactic body frame. Int J Radiat Oncol Biol Phys 62(3):652–658

    Article  PubMed  Google Scholar 

  • Popovtzer A et al (2009) The pattern of failure after reirradiation of recurrent squamous cell head and neck cancer: implications for defining the targets. Int J Radiat Oncol Biol Phys 74(5):1342–1347

    Article  PubMed  PubMed Central  Google Scholar 

  • Purdie TG et al (2007) Cone-beam computed tomography for on-line image guidance of lung stereotactic radiotherapy: localization, verification, and intrafraction tumor position. Int J Radiat Oncol Biol Phys 68(1):243–252

    Article  PubMed  Google Scholar 

  • Ramakrishna N et al (2010) A clinical comparison of patient setup and intra-fraction motion using frame-based radiosurgery versus a frameless image-guided radiosurgery system for intracranial lesions. Radiother Oncol 95(1):109–115

    Article  PubMed  Google Scholar 

  • Rieken S et al (2013) Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy. Radiother Oncol 109(3):487–492

    Article  PubMed  Google Scholar 

  • Rwigema JC et al (2010) Fractionated stereotactic body radiation therapy in the treatment of previously-irradiated recurrent head and neck carcinoma: updated report of the University of Pittsburgh experience. Am J Clin Oncol 33(3):286–93

    PubMed  Google Scholar 

  • Schwer AL et al (2008) A phase I dose-escalation study of fractionated stereotactic radiosurgery in combination with gefitinib in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 70(4):993–1001

    Article  CAS  PubMed  Google Scholar 

  • Seppenwoolde Y et al (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53(4):822–834

    Article  PubMed  Google Scholar 

  • Seppenwoolde Y et al (2007) Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys 34(7):2774–2784

    Article  PubMed  Google Scholar 

  • Shepherd SF et al (1997) Hypofractionated stereotactic radiotherapy in the management of recurrent glioma. Int J Radiat Oncol Biol Phys 37(2):393–398

    Article  CAS  PubMed  Google Scholar 

  • Smitsmans MH et al (2008) The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients. Int J Radiat Oncol Biol Phys 71(4):1279–1286

    Article  PubMed  Google Scholar 

  • Smyth G et al (2013) Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy. Phys Med Biol 58(22):8163–8177

    Article  PubMed  Google Scholar 

  • Sohn M, Weinmann M, Alber M (2009) Intensity-modulated radiotherapy optimization in a quasi-periodically deforming patient model. Int J Radiat Oncol Biol Phys 75(3):906–914

    Article  PubMed  Google Scholar 

  • Sonke JJ et al (2005) Respiratory correlated cone beam CT. Med Phys 32(4):1176–1186

    Article  PubMed  Google Scholar 

  • Sonke JJ et al (2009) Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int J Radiat Oncol Biol Phys 74(2):567–574

    Article  PubMed  Google Scholar 

  • Sterzing F et al (2010) Spinal cord sparing reirradiation with helical tomotherapy. Cancer 116(16):3961–3968

    Article  PubMed  Google Scholar 

  • Stieler F et al (2011) Reirradiation of spinal column metastases: comparison of several treatment techniques and dosimetric validation for the use of VMAT. Strahlenther Onkol 187(7):406–415

    Article  PubMed  Google Scholar 

  • Sykes JR et al (2005) A feasibility study for image guided radiotherapy using low dose, high speed, cone beam X-ray volumetric imaging. Radiother Oncol 77(1):45–52

    Article  PubMed  Google Scholar 

  • Teoh M et al (2011) Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol 84(1007):967–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terakawa Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699

    Article  PubMed  Google Scholar 

  • Underberg RW et al (2005) Benefit of respiration-gated stereotactic radiotherapy for stage I lung cancer: an analysis of 4DCT datasets. Int J Radiat Oncol Biol Phys 62(2):554–560

    Article  PubMed  Google Scholar 

  • van Herk M (2004) Errors and margins in radiotherapy. Semin Radiat Oncol 14(1):52–64

    Article  PubMed  Google Scholar 

  • van Rijssel MJ et al (2014) A critical approach to the clinical use of deformable image registration software. In response to Meijneke et al. Radiother Oncol 112(3):447–448

    Article  PubMed  Google Scholar 

  • Verellen D et al (2007) Innovations in image-guided radiotherapy. Nat Rev Cancer 7(12):949–960

    Article  CAS  PubMed  Google Scholar 

  • Vestergaard A et al (2013) Adaptive plan selection vs. re-optimisation in radiotherapy for bladder cancer: a dose accumulation comparison. Radiother Oncol 109(3):457–462

    Article  PubMed  Google Scholar 

  • Wachter S et al (2002) The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 52(1):91–100

    Article  PubMed  Google Scholar 

  • Wilbert J et al (2008) Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): system description and prototype testing. Med Phys 35(19):3911–9921

    Article  Google Scholar 

  • Wolthaus JW et al (2008) Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys 70(4):1229–1238

    Article  PubMed  Google Scholar 

  • Yan D et al (1997) Adaptive radiation therapy. Phys Med Biol 42(1):123–132

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Guckenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guckenberger, M., Sweeney, R.A., Panje, C., Tanadini-Lang, S. (2016). Reduced Normal Tissue Doses Through Advanced Technology. In: Nieder, C., Langendijk, J. (eds) Re-Irradiation: New Frontiers. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2016_55

Download citation

  • DOI: https://doi.org/10.1007/174_2016_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41823-0

  • Online ISBN: 978-3-319-41825-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics