Skip to main content
Log in

Reirradiation of Spinal Column Metastases

Comparison of Several Treatment Techniques and Dosimetric Validation for the Use of VMAT

Rebestrahlung von paraspinalen Metastasen: Vergleich verschiedener Bestrahlungstechniken und dosimetrische Validierung von VMAT

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Background:

For reirradiation of spinal column metastases, intensity-modulated radiation therapy (IMRT) reduces the dose to the spinal cord, while allowing longer treatment times. We analyzed the potential of volumetric modulated arc therapy (VMAT) to reduce treatment time and number of monitor units (MU).

Patients and Methods:

In CT datasets of 9 patients with spinal column metastases, the planned target volume (PTV) encompassed the macroscopic tumor including the spinal cord or medullary cone, respectively. The prescribed dose for the target was 40 Gy, but median spinal cord dose was intended to be < 26 Gy. We compared a posterior (3D-PA) static field technique, a two-field wedge technique (3D-wedge) and 5-/7-beam IMRT with VMAT. Conformity index (CI), homogeneity index (HI40), dose volume histogram (DVH) parameters, treatments delivery time (T), and MU were analyzed. Dosimetry was validated with EDR2-film/ionization chambers.

Results:

PTV coverage was insufficient for 3D-conformal radiotherapy (3D-CRT) when spinal cord tolerance was respected. The IMRT approach provided excellent results but has the longest treatment time. VMAT produced dose distributions similar to IMRT with shorter treatment times (VMAT: mean 4:49 min; IMRT: mean 6:50 min) and fewer MU (VMAT: 785; IMRT: 860). Reduced conformity and increased homogeneity for VMAT when compared to IMRT were observed. An absolute deviation between measured and calculated dose of +0.70 ± 3.69% was recorded. γ-Index analysis showed an agreement of 91.33 ± 3.53% for the 5%/5 mm criteria.

Conclusion:

For this paradigm, VMAT produces high quality treatment plans with homogeneity/conformity similar to static IMRT, shorter treatment times, and fewer MU. Verification measurements showed good agreement between calculation and delivered dose, leading to clinical implementation.

Ziel:

Die Intensitätsmodulierte Radiotherapie (IMRT) ermöglicht bei der Rebestrahlung von Wirbelsäulenmetastasen eine Reduktion der Dosis im Spinalkanal bei gleichzeitig längerer Bestrahlungszeit im Vergleich zur konventionellen 3D-Technik. Wir analysierten das Potential der volumetrisch modulierten Rotationstherapie (VMAT), um die Bestrahlungszeit und die Anzahl der Monitor-Einheiten (MU) zu reduzieren.

Patienten und Methoden:

9 CT-Datensätze von Patienten mit Wirbelsäulenmetastasen wurden untersucht, bei denen das Zielvolumen (ZV) den makroskopischen Tumor inklusive Spinalkanal umfasste. Verschreibungsdosis für das ZV waren 40 Gy unter Berücksichtigung der medianen Spinalkanaldosis von < 26 Gy. Wir verglichen eine posteriore 3D-Technik (3D-PA), eine 2-Felder-Technik mit Keilen (3D-Wedge) und 5/7-Felder-IMRT mit VMAT. Konformitätsindex (CI), Homogenitätsindex (HI40), Dosis-Volumen-Histogramme (DVH), Bestrahlungszeit (T) und MU wurden verglichen. Die Dosimetrie wurde mit EDR2 Filmen und Ionistationskammer überprüft.

Ergebnisse:

Die ZV-Abdeckung für die 3D-Techniken war insuffizient, wenn die Toleranzdosis des Spinalmarks berücksichtigt wurde. Der IMRT-Ansatz ergab exzellente Resultate, allerdings mit der längsten Bestrahlungszeit. Mit VMAT ließen sich ähnliche Dosisverteilungen wie mit IMRT mit kürzeren Bestrahlungszeiten (VMAT Mittel 4:49 Min., IMRT Mittel 6:50 Min.) und weniger MU (VMAT:785, IMRT:860) realisieren. Eine geringere Konformität und höhere Homogenität von VMAT wurde im Vergleich zu IMRT beobachtet. Die absolute Abweichung zwischen gemessener und berechneter Dosis betrug +0.70±3.69%. Die γ-Analyse zeigte eine Übereinstimmung von 91.33 ± 3.53% für 5%/5 mm.

Schlussfolgerung:

Für dieses Paradigma erzeugt VMAT qualitativ hochwertige Bestrahlungspläne mit zu IMRT vergleichbarer Homogenität/Konformität, kürzeren Bestrahlungszeiten und weniger MU. Verifikationsmessungen zeigten gute Übereinstimmungen zwischen errechneten und gemessenen Dosen und erlaubten die klinische Implementierung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aswad M, Baum J. Optimal time for postoperative irradiation of pterygia. Ophthalmology 1987;94:1450–1451.

    PubMed  CAS  Google Scholar 

  2. Bekibele CO, Baiyeroju AM, Ajayi BG. 5-fluorouracil vs. beta-irradiation in the prevention of pterygium recurrence. Int J Clin Pract 2004;58:920–923.

    Article  PubMed  CAS  Google Scholar 

  3. Beyer DC. Pterygia: single fraction postoperative beta irradiation. Radiology 1991;178:569–571.

    PubMed  CAS  Google Scholar 

  4. Brenner DJ, Merriam GR Jr. Postoperable irradiation for pterygium: guidelines for optimal treatment. Int J Radiat Oncol Biol Phys 1994;30:721–725.

    PubMed  CAS  Google Scholar 

  5. Cano-Parra J, Diaz-Llopis M, Maldonado MJ et al. Prospective trial of intra operative mitomycin C in the treatment of primary pterygium. Br J Ophthalmol 1995;79:439–441.

    Article  PubMed  CAS  Google Scholar 

  6. Fukushima S, Inoue T, Inoue T et al. Postpoerable irradiation of pterygium with 90Sr eye applicator. Int J Radiat Oncol Biol Phys 1999;43:597–600.

    Article  PubMed  CAS  Google Scholar 

  7. Heyd R, Dorn AP, Herkströter M et al. Radiation therapy for early stages of morbus Ledderhose. Strahlenther Onkol 2010;186:24–29.

    Article  PubMed  Google Scholar 

  8. Heyd R, Seegenschmiedt MH, Rades D et al. [The significance of radiation therapy for symptomatic vertebral hemangiomas (SVH)]. Strahlenther Onkol 2010;186:430–435.

    Article  PubMed  Google Scholar 

  9. Isohashi F, Inoue T, Xing S et al. Postoperative irradiation for pterygium. Strahlenther Onkol 2006;8:437–442.

    Article  Google Scholar 

  10. Jürgenliemk-Schulz IM, Hartman LJ, Roesink JM et al. Prevention of pterygium recurrence by postoperative single-dose β-irradiation: a prospective randomized clinical double-blind trial. Int J Radiat Oncol Biol Phys 2004;59:1138–1147.

    Article  PubMed  Google Scholar 

  11. MacKenzie FD, Hirst LW, Kynaston B et al. Recurrence rate and complications after beta irradiation for pterygia. Ophthalmology 1991;98:1776–1781.

    PubMed  CAS  Google Scholar 

  12. Monteiro-Grillo I, Gaspar L, Monteiro-Grillo M et al. Postoperative irradiation of primary or recurrent pterygium: results and sequelae. Int J Radiat Oncol Biol Phys 2000;48:865–869.

    Article  PubMed  CAS  Google Scholar 

  13. Moriarity AP, Crawford GJ, McAllister IL et al. Severe corneoscleral infection. A complication of beta irradiation scleral necrosis following pterygium excision. Arch Ophthalmol 1993;111:947–951.

    Google Scholar 

  14. Mücke R, Seegenschmiedt MH, Heyd R et al. [Radiotherapy in painful gonarthrosis. Results of a national patterns-of-care study]. Strahlenther Onkol 2010;186:7–17.

    Article  PubMed  Google Scholar 

  15. Nishimura Y, Nakai A, Yoshimasu T et al. Long-term results of fractionated Strontium-90 radiation therapy for pterygia. Int J Radiat Oncol Biol Phys 2000;46:137–141.

    Article  PubMed  CAS  Google Scholar 

  16. Pajic B, Pallas A, Aebersold D et al. Prospective study on exclusive, nonsurgerical strontium-/yttrium-90 irradiation of pterygia. Strahlenther Onkol 2004;8:510–516.

    Google Scholar 

  17. Pajonk F, Flick H, Mittelviefhaus H et al. Postoperative pterygium prevention by radiotherapy with strontium-90 beta-rays. Front Radiat Ther Oncol Basel Karger 1997;30:259–264.

    CAS  Google Scholar 

  18. Paryani SB, Scott WP, Wells JW Jr. Management of pterygium with surgery and radiation therapy. Int J Radiat Oncol Biol Phys 1993;28:101–103.

    Google Scholar 

  19. Schultze J, Hinrichs M, Kimmig B. Results of aduvant radiation therapy after surgical excision of pterygium. Ger J Ophthalmol 1996;5:207–210.

    PubMed  CAS  Google Scholar 

  20. Simsek T, Gunalp I, Atilla H. Comparative efficacy of β-irradiation and mitomycin-C in primary and recurrent pterygium. Eur J Ophthalmol 2001;11:126–132.

    PubMed  CAS  Google Scholar 

  21. Smith RA, Dzugan SA, Kosko P. Postoperative beta irradiation for control of pterygium. J Miss State Med Assoc 2001;42:167–169.

    PubMed  CAS  Google Scholar 

  22. Vastardis I, Pajic B, Greiner RH et al. Prospective study of exclusive strontium-/yttrium-90 β-irradiation of primary and recurrent pterygia with no prior surgical excision. Strahlenther Onkol 2009;12:808–814.

    Article  Google Scholar 

  23. Wilder RB, Buatti JM, Kittelson JM et al. Pterygium treated with excision and postoperative beta irradiation. Int J Radiat Oncol Biol Phys 1992;23:533–537.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Stieler MSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stieler, F., Wolff, D., Bauer, L. et al. Reirradiation of Spinal Column Metastases. Strahlenther Onkol 187, 406–415 (2011). https://doi.org/10.1007/s00066-011-2198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-2198-6

Key Words

Schlüsselwörter

Navigation