Skip to main content

Spinal Cord Toxicity

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1752 Accesses

Abstract

Radiation myelopathy is a feared and generally avoidable complication of thoracic irradiation. A better understanding of the radiation response of the spinal cord and advances in radiation therapy delivery techniques mean that this complication should be preventable in nearly all treatment situations. A better understanding of the pathogenesis of the injury has lead to the protection of the spinal cord from radiation in experimental studies and to the possible treatment of radiation myelopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abadir R (1980) Radiation myelitis: can diagnosis be unequivocal with histological evidence? Int J Radiat Oncol Biol Phys 6:649–650

    Article  PubMed  CAS  Google Scholar 

  • Alfonso ER, De Gregorio MA, Mateo P, Esco R, Bascon N, Morales F, Bellosta R, Lopez P, Gimeno M, Roca M, Villavieja JL (1997) Radiation myelopathy in over-irradiated patients: MR imaging findings. Eur Radiol 7:400–404

    Article  PubMed  CAS  Google Scholar 

  • Ang KK, van der Kogel AJ, van der Schueren E (1983) The effect of small radiation doses on the rat spinal cord: the concept of partial tolerance. Int J Radiat Oncol Biol Phys 9:1487–1491

    Article  PubMed  CAS  Google Scholar 

  • Ang KK, Price RE, Stephens LC, Jiang GL, Feng Y, Schultheiss TE, Peters LJ (1993) The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys 25:459–464

    Article  PubMed  CAS  Google Scholar 

  • Ang KK, Jiang GL, Feng Y, Stephens LC, Tucker SL, Price RE (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Asscher AW, Anson SG (1962) Arterial hypertension and irradiation damage to the nervous system. Lancet II:1343–1346

    Google Scholar 

  • Austin JP, Urie MM, Cardenosa G, Munzenrider JE (1993) Probable causes of recurrence in patients with chordoma and chondrosarcoma of the base of skull and cervical spine. Int J Radiat Oncol Biol Phys 25:439–444

    Article  PubMed  CAS  Google Scholar 

  • Baekmark UB (1975) Neurologic complications after irradiation of the cervical spinal cord for malignant tumour of the head and neck. Acta Radiol Ther Phys Biol 14:33–41

    Article  PubMed  CAS  Google Scholar 

  • Black MJ, Kagan AR (1980) Transverse myelitis. Laryngoscope 90:847–852

    Article  PubMed  CAS  Google Scholar 

  • Blakemore WF, Palmer AC (1982) Delayed Infraction of Spinal Cord White Matter Following X-irradiation. J Pathol 137:273–280

    Article  PubMed  CAS  Google Scholar 

  • Chouchair AK (1991) Myelopathies in the cancer patient: incidence, presentation, diagnosis and management. Oncology 5:25–37

    Google Scholar 

  • Coderre JA, Morris GM, Micca PL, Hopewell JW, Verhagen I, Kleiboer BJ, van der Kogel AJ (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166:495–503

    Article  PubMed  CAS  Google Scholar 

  • Coy P, Dolman CL (1971) Radiation myelopathy in relation to oxygen level. Br J Radiol 44:705–707

    Article  PubMed  CAS  Google Scholar 

  • Dische S, Saunders MI (1989) Continuous, hyperfractionated, accelerated radiotherapy (CHART): an interim report upon late morbidity. Radiother Oncol 16:65–72

    Article  PubMed  CAS  Google Scholar 

  • Dische S, Saunders MI, Warburton MF (1986) Hemoglobin, radiation, morbidity and survival. Int J Radiat Oncol Biol Phys 12:1335–1337

    Article  PubMed  CAS  Google Scholar 

  • Dorfman LS, Donaldson SS, Gupta PR, Bosley TM (1982) Electrophysiologic evidence of subclinical injury to the posterior columns of the human spinal cord after therapeutic radiation. Cancer 50:2815–2819

    Article  PubMed  CAS  Google Scholar 

  • Feldmann E, Posner JB (1986) Episodic neurologic dysfunction in patients with Hodgkin’s disease. Arch Neurol 43:1227–1233

    Article  PubMed  CAS  Google Scholar 

  • Gibbs IC, Patil C, Gerszten PC, Adler JR Jr, Burton SA (2009) Delayed radiation-induced myelopathy after spinal radiosurgery. Neurosurg 64:A67–A72

    Article  Google Scholar 

  • Gonzalez J, Kumar AJ, Conrad CA, Levin VA (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67:323–326

    Article  PubMed  CAS  Google Scholar 

  • Holdorff B (1980) Dose effect relationships in cervical and thoracic radiation myelopathies. Acta Radiol Oncol 19:271–277

    Article  PubMed  CAS  Google Scholar 

  • Hopewell JW, van der Kogel AJ (1999) Pathophysiological mechanisms leading to the development of late radiation-induced damage to the central nervous system. Front Radiat Ther Oncol 33:265–275

    Article  PubMed  CAS  Google Scholar 

  • Hopewell JW, Wright EA (1970) The nature of latent cerebral irradiation damage and its modification by hypertension. Br J Radiol 43:161–167

    Article  PubMed  CAS  Google Scholar 

  • Hornsey S, White A (1980) Isoeffect curve for radiation myelopathy. Br J Radiol 53:168–169

    Article  PubMed  CAS  Google Scholar 

  • Hornsey S, Myers R, Coultas PG, Rogers MA, White A (1981) Turnover of proliferative cells in the spinal cord after X- irradiation and its relation to time-dependent repair of radiation damage. Br J Radiol 54:1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Hornsey S, Myers S, Jenkinson T (1990) The reduction of radiation damage to the spinal cord by post-irradiation administration of vasoactive drugs. Int J Radiat Oncol Biol Phys 18:1437–1442

    Article  PubMed  CAS  Google Scholar 

  • Hubbard BM, Hopewell JW (1979) Changes in the neuroglial cell populations of the rat spinal cord after local X-irradiation. Br J Radiol 52:816–821

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Fayos JV (1981) Radiation tolerance of the cervical spinal cord. Radiology 139:473–478

    PubMed  CAS  Google Scholar 

  • Kitamura HK, Kameda Y, Yoshimura Y, Magaoka S, Takai S, Nagatsuka A (1979) Delayed radiation myelopathy. Yokohama Medical Bulletin 30:61–69

    Google Scholar 

  • Knowles JF (1983) The radiosensitivity of the guinea pig spinal cord to X-rays: the effect of retreatment at 1 year and the effect of age at the time of irradiation. Int J Radiat Biol 44:433–442

    Article  CAS  Google Scholar 

  • Koehler PJ, Verbiest H, Jager J, Vecht CJ (1996) Delayed radiation myelopathy: serial MR-imaging and pathology. Clin Neurol Neurosurg 98:197–201

    Article  PubMed  CAS  Google Scholar 

  • Kramer S (1968) The hazards of therapeutic irradiation of the central nervous system. Clin Neurosurg 15:301–318

    PubMed  CAS  Google Scholar 

  • Lechevalier B, Humeau F, Houteville JP (1973) Myelopathies radiotherapiques ‘hypertenphiantes’. A propos de cinq observations dont une anatome clinique. Revue Neurologique 129:119–132

    PubMed  CAS  Google Scholar 

  • Levin VA, Luc B, Ping H, Ashok JK, Jeffrey SW, Bekele BN, Sujit P, Monica L, Mark RG, Edward FJ (2010) Randomized Double-Blind Placebo-Controlled Trial of Bevacizumab Therapy for Radiation Necrosis of the Central Nervous System. Int J Radiat Oncol Biol Phys 79:1487–1495.

    Article  Google Scholar 

  • Liu AK, Macy ME, Foreman NK (2009) Bevacizumab as therapy for radiation necrosis in four children with pontine gliomas. Int J Radiat Oncol Biol Phys 75:1148–1154

    Article  PubMed  CAS  Google Scholar 

  • Lyubimova N, Hopewell JW (2004) Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol 77:488–492

    Article  PubMed  CAS  Google Scholar 

  • Marcus RG, Million RR (1990) The incidence of myelitis after irradiation of the cervical spinal cord. Radiology 93:3–8

    Google Scholar 

  • Marks RD Jr, Agarwal SK, Constable WC (1973) Increased rate of complications as a result of treating only one prescribed field daily. Radiology 107:615–619

    PubMed  Google Scholar 

  • Marty R, Minckler DS (1973) Radiation myelitis simulating tumor. Arch Neurol 29:352–354

    Article  PubMed  CAS  Google Scholar 

  • Masselos K, Begbie S, Lees JN (2009) Spinal cord infarction in a patient with metastatic non-small cell lung cancer, receiving chemotherapy combined with bevacizumab. Asia-Pacific J Clin Oncol 5:151–153

    Article  Google Scholar 

  • Masuda K, Reid BO, Withers HR (1977) Dose effect relationship for epilation and late effects on spinal cord in rates exposed to gamma rays. Radiology 122:239–242

    PubMed  CAS  Google Scholar 

  • Morris GM, Coderre JA, Hopewell JW, Micca PL, Nawrocky MM, Liu HB, Bywaters A (1994a) Response of the central nervous system to boron neutron capture irradiation: evaluation using rat spinal cord model. Radiother Oncol 32:249–255

    Article  PubMed  CAS  Google Scholar 

  • Morris GM, Coderre JA, Whitehouse EM, Micca P, Hopewell JW (1994b) Boron neutron capture therapy: a guide to the understanding of the pathogenesis of late radiation damage to the rat spinal cord. Int J Radiat Oncol Biol Phys 28:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Morris GM, Coderre JA, Bywaters A, Whitehouse E, Hopewell JW (1996) Boron neutron capture irradiation of the rat spinal cord: histopathological evidence of a vascular-mediated pathogenesis. Radiat Res 146:313–320

    Article  PubMed  CAS  Google Scholar 

  • Morris GM, Coderre JA, Hopewell JW, Rezvani M, Micca PL, Fisher CD (1997a) Response of the central nervous system to fractionated boron neutron capture irradiation: studies with borocaptate sodium. Int J Radiat Biol 71:185–192

    Article  PubMed  CAS  Google Scholar 

  • Morris GM, Coderre JA, Micca PL, Fisher CD, Capala J, Hopewell JW (1997b) Central nervous system tolerance to boron neutron capture therapy with p-boronophenylalanine. Br J Cancer 76:1623–1629

    Article  PubMed  CAS  Google Scholar 

  • Morris GM, Coderre JA, Hopewell JW, Micca PL, Wielopolski L (1998) Boron neutron capture therapy: re-irradiation response of the rat spinal cord. Radiother Oncol 48:313–317

    Article  PubMed  CAS  Google Scholar 

  • Myers R, Rogers MA, Hornsey S (1986) A reappraisal of the roles of glial and vascular elements in the development of white matter necrosis in irradiated rat spinal cord. Br J Cancer-Supple 7:221–223

    CAS  Google Scholar 

  • Nieder C, Price RE, Rivera B, Andratschke N, Ang KK (2005) Effects of insulin-like growth factor-1 (IGF-1) and amifostine in spinal cord reirradiation. Strahlenther Oncol 181:691–695

    Article  PubMed  Google Scholar 

  • Nordal RA, Wong CS (2005) Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys 62:279–287

    Article  PubMed  CAS  Google Scholar 

  • Nordal RA, Nagy A, Pintilie M, Wong CS (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10:3342–3353

    Article  PubMed  CAS  Google Scholar 

  • Otsuka S, Coderre JA, Micca PL, Morris GM, Hopewell JW, Rola R, Fike JR (2006) Depletion of neural precursor cells after local brain irradiation is due to radiation dose to the parenchyma, not the vasculature. Radiat Res 165:582–591

    Article  PubMed  CAS  Google Scholar 

  • Philippo H, Huiskamp R, Winter AM, Gharbaran B, van der Kogel AJ (2000) Age dependence of the radiosensitivity of glial progenitors for In vivo fission-neutron and X irradiation. Radiat Res 154:44–53

    Article  PubMed  CAS  Google Scholar 

  • Philippo H, Winter EA, van der Kogel AJ, Huiskamp R (2005) Recovery capacity of glial progenitors after in vivo fission-neutron or X irradiation: age dependence, fractionation and low-dose-rate irradiations. Radiat Res 163:636–643

    Article  PubMed  CAS  Google Scholar 

  • Ruifrok AC, Stephens LC, van der Kogel AJ (1994) Radiation response of the rat cervical spinal cord after irradiation at different ages: tolerance, latency and pathology. Int J Radiat Oncol Biol Phys 29:73–79

    Article  PubMed  CAS  Google Scholar 

  • Ryu S, Jin JY, Jin R, Rock J, Ajlouni M, Movsas B, Rosenblum M, Kim JH (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109:628–636

    Article  PubMed  Google Scholar 

  • Sahgal A, Ma L, Gibbs I, Gerszten PC, Ryu S, Soltys S, Weinberg V, Wong S, Chang E, Fowler J, Larson DA (2010) Spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 77:548–553

    Article  PubMed  Google Scholar 

  • Schultheiss TE (2008) The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys 71:1455–1459

    Article  PubMed  Google Scholar 

  • Schultheiss TE, Stephens LC (1992) Permanent Radiation Myelopathy. Br J Radiol 65:737–753

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Orton CG, Peck RA (1983) Models in radiotherapy: volume effects. Med Phys 10:410–415

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Higgins EH, El-Mahdi AM (1984a) The latent period in clinical radiation myelopathy. Int J Radiat Oncol Biol Phys 10:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Higgins EM, El-Mahdi AM (1984b) Extrinsic versus intrinsic dose dependence of latency in radiation myelopathy. Int J Radiat Oncol Biol Phys 10:2389

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Stephens LC, Peters LJ (1986) Survival in radiation myelopathy. Int J Radiat Oncol Biol Phys 12:1765–1769

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Stephens LC, Maor MH (1988) Analysis of the histopathology of radiation myelopathy. Int J Radiat Oncol Biol Phys 14:27–32

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Stephens LC, Jiang GL, Ang KK, Peters LJ (1990) Radiation myelopathy in primates treated with conventional fractionation. Int J Radiat Oncol Biol Phys 19:935–940

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Stephens LC, Ang KK, Jardine JH, Peters LJ (1992) Neutron RBE for primate spinal cord treated with clinical regimens. Radiat Res 129:212–217

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Stephens LC, Ang KK, Price RE, Peters LJ (1994) Volume effects in rhesus monkey spinal cord. Int J Radiat Oncol Biol Phys 29:67–72

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Kun LE, Ang KK, Stephens LC (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112

    Article  PubMed  CAS  Google Scholar 

  • Snooks SJ, Swash M (1985) Motor conduction velocity in the human spinal cord: slowed conduction in multiple sclerosis and radiation myelopathy. J Neurol Neurosurg Psychiatry 48:1135–1139

    Article  PubMed  CAS  Google Scholar 

  • Stephens LC, Hussey DH, Raulston GL, Jardine JH, Gray KN, Almond PR (1983) Late effects of 50 MeV neutron and cobalt-60 irradiation of rhesus monkey cervical spinal cord. Int J Radiat Oncol Biol Phys 9:859–865

    Article  PubMed  CAS  Google Scholar 

  • Thames HD (1989) Repair kinetics in tissues: alternative models. Radiother Oncol 14:321–327

    Article  PubMed  CAS  Google Scholar 

  • Thames HD, Ang KK, Stewart FA, van der Schueren E (1988) Does incomplete repair explain the apparent failure of the basic LQ model to predict spinal cord and kidney responses to low doses per fraction? Int J Radiat Biol 54:13–19

    Article  PubMed  CAS  Google Scholar 

  • van den Brenk HAS, Richter W, Hurley RH (1968) Radiosensitivity of the human oxygenated cervical spinal cord based on analysis of 357 cases receiving 4 MeV X- rays in hyperbaric oxygen. Br J Radiol 41:205–214

    Article  Google Scholar 

  • van der Kogel AJ (1974) Late effects of spinal cord irradiation with 300 kV X-Rays and 15 MeV neutrons. Br J Radiol 45:393–398

    Article  Google Scholar 

  • van der Kogel AJ (1977) Radiation tolerance of the rat spinal cord: time-dose relationships. Radiology 122:505–509

    PubMed  Google Scholar 

  • van der Kogel AJ (1979) Late effects of radiation on the spinal cord. Dose-effect relationships and pathogenesis. Unpublished Ph.D. Thesis, University of Amsterdam, Amsterdam, Holland

    Google Scholar 

  • van der Kogel AJ (1991) Central nervous system radiation injury in small animal models. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation Injury to the Nervous System. Raven Press, New York, pp 91–111

    Google Scholar 

  • van der Maazen RW, Verhagen I, van der Kogel AJ (1990) An in vitro clonogenic assay to assess radiation damage in rat CNS glial progenitor cells. Int J Radiat Biol 58:835–844

    Article  PubMed  Google Scholar 

  • van der Maazen RW, Verhagen I, Kleiboer BJ, van der Kogel AJ (1991) Radiosensitivity of glial progenitor cells of the perinatal and adult rat optic nerve studied by an in vitro clonogenic assay. Radiother Oncol 20:258–264

    Article  PubMed  Google Scholar 

  • van der Maazen RW, Verhagen I, Kleiboer BJ, van der Kogel AJ (1992) Repopulation of O-2A progenitor cells after irradiation of the adult rat optic nerve analyzed by an in vitro clonogenic assay. Radiat Res 132:82–86

    Article  PubMed  Google Scholar 

  • van der Maazen RW, Kleiboer BJ, Verhagen I, van der Kogel AJ (1993) Repair capacity of adult rat glial progenitor cells determined by an in vitro clonogenic assay after in vitro or in vivo fractionated irradiation. Int J Radiat Biol 63:661–666

    Article  PubMed  Google Scholar 

  • Verity GL (1968) Tissue tolerance: central nervous system. Radiology 91:1221–1225

    PubMed  CAS  Google Scholar 

  • Wang PY, Shen WC, Jan JS (1992) Magnetic resonance imaging in radiation myelopathy. AJNR 13:1049–1055

    PubMed  CAS  Google Scholar 

  • Wong CS, Van Dyk J, Simpson WJ (1991) Myelopathy following hyperfractionated accelerated radiotherapy for anaplastic thyroid carcinoma. Radiother Oncol 20:3–9

    Article  PubMed  CAS  Google Scholar 

  • Wong CS, Minkin S, Hill RP (1992) Linear quadratic model underestimates sparing effect of small doses per fraction in rat spinal cord. Radiother Oncol 23:176–184

    Article  PubMed  CAS  Google Scholar 

  • Wong ET, Huberman M, Lu XQ, Mahadevan A (2008) Bevacizumab reverses cerebral radiation necrosis. J Clin Oncol 26:5649–5650

    Article  PubMed  Google Scholar 

  • Worthington BS (1979) Diffuse cord enlargement in radiation myelopathy. Clin Radiol 30:117–119

    Article  PubMed  CAS  Google Scholar 

  • Zulch KJ, Oeser H (1974) Delayed spinal radionecrosis-a juridical error? Neuroradiology 8:173–176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Schultheiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schultheiss, T.E. (2011). Spinal Cord Toxicity. In: Jeremic, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_274

Download citation

  • DOI: https://doi.org/10.1007/174_2011_274

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19924-0

  • Online ISBN: 978-3-642-19925-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics