Skip to main content

Spinal Cord Tolerance and Risk of Radiation Myelopathy

  • Chapter
  • First Online:
Adult CNS Radiation Oncology

Abstract

Radiation myelopathy (RM) is one of the most feared complications of radiation therapy.

It is a diagnosis of exclusion based on both clinical and radiographic findings. Safe spinal cord dose limits have been derived from preclinical and limited human clinical dosimetric data. The doses to the spinal cord associated with a clinically acceptable risk of RM (≤5%) vary depending on dose per fraction, technique, previous radiation treatment, and time interval between radiation courses. When appropriate spinal cord dose limits are applied, RM is considered rare event. This chapter will summarize the data, specific to both conventionally fractionated radiation (1.8–2.0 Gy/fraction) and high-dose stereotactic body radiotherapy (>5 Gy/fraction), as to spinal cord tolerance and recommendations for safe practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong CS, Van Dyk J, Milosevic M, et al. Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys. 1994;30(3):575–81.

    Google Scholar 

  2. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  3. Sahgal A, Roberge D, Schellenberg D, et al. The Canadian association of radiation oncology scope of practice guidelines for lung, liver and spine stereotactic body radiotherapy. Clin Oncol (R Coll Radiol). 2012;24(9):629–39.

    Article  CAS  Google Scholar 

  4. Sahgal A, Ma L, Gibbs I, et al. Spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77(2):548–53.

    Article  PubMed  Google Scholar 

  5. Sahgal A, Ma L, Weinberg V, et al. Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(1):107–16.

    Article  PubMed  Google Scholar 

  6. Sahgal A, Weinberg V, Ma L, et al. Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys. 2013;85(2):341–7.

    Article  PubMed  Google Scholar 

  7. Wong CS, Fehlings MG, Sahgal A. Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord. 2015;53(8):574–80.

    Article  CAS  PubMed  Google Scholar 

  8. Schultheiss TE, Higgins EM, El-Mahdi AM. The latent period in clinical radiation myelopathy. Int J Radiat Oncol Biol Phys. 1984;10(7):1109–15.

    Article  CAS  PubMed  Google Scholar 

  9. Schultheiss TE, Stephens LC, Peters LJ. Survival in radiation myelopathy. Int J Radiat Oncol Biol Phys. 1986;12(10):1765–9.

    Article  CAS  PubMed  Google Scholar 

  10. Wang PY, Shen WC, Jan JS. Serial MRI changes in radiation myelopathy. Neuroradiology. 1995;37(5):374–7.

    Article  CAS  PubMed  Google Scholar 

  11. Philippens ME, Gambarota G, van der Kogel AJ, et al. Radiation effects in the rat spinal cord: evaluation with apparent diffusion coefficient versus T2 at serial MR imaging. Radiology. 2009;250(2):387–97.

    Google Scholar 

  12. Uchida K, Nakajima H, Takamura T, et al. Neurological improvement associated with resolution of irradiation-induced myelopathy: serial magnetic resonance imaging and positron emission tomography findings. J Neuroimaging. 2009;19(3):274–6.

    Article  PubMed  Google Scholar 

  13. Esik O, Csere T, Stefanits K, et al. A review on radiogenic Lhermitte’s sign. Pathol Oncol Res. 2003;9(2):115–20.

    Article  PubMed  Google Scholar 

  14. Withers HR, Taylor JM, Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys. 1988;14(4):751–9.

    Article  CAS  PubMed  Google Scholar 

  15. Nieder C, Grosu AL, Andratschke NH, et al. Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys. 2005;61(3):851–5.

    Google Scholar 

  16. Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985;8:S13–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys. 1989;16(6):1623–30.

    Article  CAS  PubMed  Google Scholar 

  18. Daly ME, Luxton G, Choi CY, et al. Normal tissue complication probability estimation by the Lyman-Kutcher-Burman method does not accurately predict spinal cord tolerance to stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;82(5):2025–32.

    Article  PubMed  Google Scholar 

  19. Wang JZ, Huang Z, Lo SS, et al. A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med. 2010;2(39):39ra48.

    Google Scholar 

  20. Huang Z, Mayr NA, Yuh WT, et al. Reirradiation with stereotactic body radiotherapy: analysis of human spinal cord tolerance using the generalized linear-quadratic model. Future Oncol. 2013;9(6):879–87.

    Google Scholar 

  21. Sahgal A, Ma L, Fowler J, et al. Impact of dose hot spots on spinal cord tolerance following stereotactic body radiotherapy: a generalized biological effective dose analysis. Technol Cancer Res Treat. 2012;11(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  22. Ma L, Kirby N, Korol R, et al. Assessing small-volume spinal cord dose for repeat spinal stereotactic body radiotherapy treatments. Phys Med Biol. 2012;57(23):7843–51.

    Google Scholar 

  23. Lo YC, McBride WH, Withers HR. The effect of single doses of radiation on mouse spinal cord. Int J Radiat Oncol Biol Phys. 1992;22(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  24. Wong CS, Poon JK, Hill RP. Re-irradiation tolerance in the rat spinal cord: influence of level of initial damage. Radiother Oncol. 1993;26(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  25. Hopewell JW, Morris AD, Dixon-Brown A. The influence of field size on the late tolerance of the rat spinal cord to single doses of X rays. Br J Radiol. 1987;60(719):1099–108.

    Article  CAS  PubMed  Google Scholar 

  26. Knowles JF. The effects of single dose X-irradiation on the Guinea-pig spinal cord. Int J Radiat Biol Relat Stud Phys Chem Med. 1981;40(3):265–75.

    Article  CAS  PubMed  Google Scholar 

  27. Knowles JF. The radiosensitivity of the Guinea-pig spinal cord to X-rays: the effect of retreatment at one year and the effect of age at the time of irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1983;44(5):433–42.

    Article  CAS  PubMed  Google Scholar 

  28. Bijl HP, van Luijk P, Coppes RP, et al. Dose-volume effects in the rat cervical spinal cord after proton irradiation. Int J Radiat Oncol Biol Phys. 2002;52(1):205–11.

    Google Scholar 

  29. Scalliet P, Landuyt W, van der Schueren E. Repair kinetics as a determining factor for late tolerance of central nervous system to low dose rate irradiation. Radiother Oncol. 1989;14(4):345–53.

    Article  CAS  PubMed  Google Scholar 

  30. Medin PM, Foster RD, van der Kogel AJ, et al. Spinal cord tolerance to single-session uniform irradiation in pigs: implications for a dose-volume effect. Radiother Oncol. 2013;106(1):101–5.

    Google Scholar 

  31. Franklin RJ, Gilson JM, Blakemore WF. Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res. 1997;50(2):337–44.

    Article  CAS  PubMed  Google Scholar 

  32. Withers R. Migration and myelination. Int J Radiat Oncol Biol Phys. 2003;57(1):9–10.

    Article  PubMed  Google Scholar 

  33. van Luijk P, Bijl HP, Coppes RP, et al. Techniques for precision irradiation of the lateral half of the rat cervical spinal cord using 150 MeV protons [corrected]. Phys Med Biol. 2001;46(11):2857–71.

    Article  PubMed  Google Scholar 

  34. Bijl HP, van Luijk P, Coppes RP, et al. Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiat Oncol Biol Phys. 2005;61(2):543–51.

    Google Scholar 

  35. Medin PM, Foster RD, van der Kogel AJ, et al. Spinal cord tolerance to single-fraction partial-volume irradiation: a swine model. Int J Radiat Oncol Biol Phys. 2011;79(1):226–32.

    Google Scholar 

  36. van den Aardweg GJ, Hopewell JW, Whitehouse EM. The radiation response of the cervical spinal cord of the pig: effects of changing the irradiated volume. Int J Radiat Oncol Biol Phys. 1995;31(1):51–5.

    Article  PubMed  Google Scholar 

  37. Daly ME, Choi CY, Gibbs IC, et al. Tolerance of the spinal cord to stereotactic radiosurgery: insights from hemangioblastomas. Int J Radiat Oncol Biol Phys. 2011;80(1):213–20.

    Article  PubMed  Google Scholar 

  38. Bijl HP, van Luijk P, Coppes RP, et al. Influence of adjacent low-dose fields on tolerance to high doses of protons in rat cervical spinal cord. Int J Radiat Oncol Biol Phys. 2006;64(4):1204–10.

    Google Scholar 

  39. Schultheiss TE. The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys. 2008;71(5):1455–9.

    Article  PubMed  Google Scholar 

  40. Ang KK, Price RE, Stephens LC, et al. The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys. 1993;25(3):459–64.

    Article  CAS  PubMed  Google Scholar 

  41. Ang KK, Jiang GL, Feng Y, et al. Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys. 2001;50(4):1013–20.

    Google Scholar 

  42. Wong CS, Hao Y. Long-term recovery kinetics of radiation damage in rat spinal cord. Int J Radiat Oncol Biol Phys. 1997;37(1):171–9.

    Article  CAS  PubMed  Google Scholar 

  43. Mason KA, Withers HR, Chiang CS. Late effects of radiation on the lumbar spinal cord of Guinea pigs: re-treatment tolerance. Int J Radiat Oncol Biol Phys. 1993;26(4):643–8.

    Article  CAS  PubMed  Google Scholar 

  44. Medin PM, Foster RD, van der Kogel AJ, et al. Spinal cord tolerance to reirradiation with single-fraction radiosurgery: a swine model. Int J Radiat Oncol Biol Phys. 2012;83(3):1031–7.

    Google Scholar 

  45. Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S42–9.

    Article  PubMed  Google Scholar 

  46. DeLaney TF, Liebsch NJ, Pedlow FX, et al. Long-term results of phase II study of high dose photon/proton radiotherapy in the management of spine chordomas, chondrosarcomas, and other sarcomas. J Surg Oncol. 2014;110(2):115–22.

    Article  PubMed  Google Scholar 

  47. DeLaney TF, Liebsch NJ, Pedlow FX, et al. Phase II study of high-dose photon/proton radiotherapy in the management of spine sarcomas. Int J Radiat Oncol Biol Phys. 2009;74(3):732–9.

    Article  CAS  PubMed  Google Scholar 

  48. Hashmi A, Guckenberger M, Kersh R, et al. Re-irradiation stereotactic body radiotherapy for spinal metastases: a multi-institutional outcome analysis. J Neurosurg Spine. 2016;25:1–8.

    Article  Google Scholar 

  49. Thibault I, Campbell M, Tseng CL, et al. Salvage stereotactic body radiotherapy (SBRT) following in-field failure of initial SBRT for spinal metastases. Int J Radiat Oncol Biol Phys. 2015;93(2):353–60.

    Article  PubMed  Google Scholar 

  50. Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys. 2005;62(1):279–87.

    Article  CAS  PubMed  Google Scholar 

  51. Nordal RA, Wong CS. Intercellular adhesion molecule-1 and blood-spinal cord barrier disruption in central nervous system radiation injury. J Neuropathol Exp Neurol. 2004;63(5):474–83.

    Article  CAS  PubMed  Google Scholar 

  52. Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A. 2000;97(19):10526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tonia T, Mettler A, Robert N, et al. Erythropoietin or darbepoetin for patients with cancer. Cochrane Database Syst Rev. 2012;12:CD003407.

    PubMed  Google Scholar 

  54. Helms A, Evans AW, Chu J, et al. Hyperbaric oxygen for neurologic indications—action plan for multicenter trials in: stroke, traumatic brain injury, radiation encephalopathy & status migrainosus. Undersea Hyperb Med. 2011;38(5):309–19.

    PubMed  CAS  Google Scholar 

  55. Calabro F, Jinkins JR. MRI of radiation myelitis: a report of a case treated with hyperbaric oxygen. Eur Radiol. 2000;10(7):1079–84.

    Article  CAS  PubMed  Google Scholar 

  56. Thibault I, Chang EL, Sheehan J, et al. Response assessment after stereotactic body radiotherapy for spinal metastasis: a report from the SPIne response assessment in neuro-oncology (SPINO) group. Lancet Oncol. 2015;16(16):e595–603.

    Article  PubMed  Google Scholar 

  57. Hyde D, Lochray F, Korol R, et al. Spine stereotactic body radiotherapy utilizing cone-beam CT image-guidance with a robotic couch: Intrafraction motion analysis accounting for all six degrees of freedom. Int J Radiat Oncol Biol Phys. 2012;82(3):e555–62.

    Article  PubMed  Google Scholar 

Download references

Conflicts of Interest

Arjun Sahgal: Grants from Elekta AB and educational honoraria from previous educational seminars from Elekta AB, Varian Medical Systems, Accuray and Medtronic kyphoplasty division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun Sahgal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alghamdi, M. et al. (2018). Spinal Cord Tolerance and Risk of Radiation Myelopathy. In: Chang, E., Brown, P., Lo, S., Sahgal, A., Suh, J. (eds) Adult CNS Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-42878-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42878-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42877-2

  • Online ISBN: 978-3-319-42878-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics