Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 292))

  • 103 Accesses

Abstract

Hemorrhage is one of the major challenges in healthcare area. Many hemostats are commercially available, but their application is limited due to high cost, non-biocompatible and immunogenic properties. Chitosan and its derivatives have been extensively used as a hemostatic material to stop bleeding. The amine and hydroxyl groups of chitosan are modified into different derivatives, for exhibiting better solubility, hemostatic properties, biocompatibility, moisture absorption, film-forming, and antibacterial activities. One such derivative is carboxymethyl chitosan and it has been widely studied for hemostatic and other biomedical applications. In this book chapter, we are overviewing the different forms of carboxymethyl chitosan derivatives such as hydrogel, sponges, cryogel, membranes and microspheres which were studied for hemostatic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    Article  CAS  Google Scholar 

  2. Kast CE, Frick W, Losert U, Bernkop-Schnürch A (2003) Chitosan-thioglycolic acid conjugate: a new scaffold material for tissue engineering? Int J Pharm 256:183–189

    Article  CAS  Google Scholar 

  3. Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero A, Acosta N (2021) Chitosan: an overview of its properties and applications. Polymers 13:3256

    Article  CAS  Google Scholar 

  4. Kalliola S, Repo E, Srivastava V, Zhao F, Heiskanen JP, Sirviö JA, Liimatainen H, Sillanpää M (2018) Carboxymethyl chitosan and its hydrophobically modified derivative as pH-switchable emulsifiers. Langmuir 34:2800–2806

    Article  CAS  Google Scholar 

  5. Fu D, Han B, Dong W, Yang Z, Lv Y, Liu W (2011) Effects of carboxymethyl chitosan on the blood system of rats. Biochem Biophys Res Commun 408:110–114

    Article  CAS  Google Scholar 

  6. Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051

    Article  CAS  Google Scholar 

  7. Farinha I, Freitas F (2020) Chemically modified chitin, chitosan, and chitinous polymers as biomater. In: Handbook of chitin and chitosan, pp 43–69

    Chapter  Google Scholar 

  8. Jiang Z, Han B, Liu W, Peng Y (2017) Evaluation on biological compatibility of carboxymethyl chitosan as biomaterials for antitumor drug delivery. J Biomater Appl 31:985–994

    Article  CAS  Google Scholar 

  9. Algharib SA, Dawood A, Zhou K, Chen D, Li C, Meng K, Maa MK, Ahmed S, Huang L, Xie S (2020) Designing, structural determination and biological effects of rifaximin loaded chitosan-carboxymethyl chitosan nanogel. Carbohydr Polym 248:116782

    Article  CAS  Google Scholar 

  10. Li H, Jiang Z, Han B, Niu S, Dong W, Liu W (2015) Pharmacokinetics and biodegradation of chitosan in rats. J Ocean Univ China 14:897–904

    Article  CAS  Google Scholar 

  11. Yang Z, Han B, Fu D, Liu W (2012) Acute toxicity of high dosage carboxymethyl chitosan and its effect on the blood parameters in rats. J Mater Sci Mater Med 23:457–462

    Article  CAS  Google Scholar 

  12. Tungtong S, Okonogi S, Chowwanapoonpohn S, Phutdhawong W, Yotsawimonwat S (2012) Solubility, viscosity and rheological properties of water-soluble chitosan derivatives. Maejo Int J Sci Technol 6(2):315

    CAS  Google Scholar 

  13. Fei Liu X, Lin Guan Y, Zhi Yang D, Li Z, De Yao K (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335

    Article  Google Scholar 

  14. Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55:675–709

    Article  CAS  Google Scholar 

  15. Mourya VK, Inamdara NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1:11–33

    Article  CAS  Google Scholar 

  16. Khattak S, Wahid F, Liu LP, Jia SR, Chu LQ, Xie YY, Li ZX, Zhang C (2019) Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Appl Microbiol Biotechnol 103:1989–2006

    Article  CAS  Google Scholar 

  17. Vu BT, Hua VM, Tang TN, Dang NNT, Cao HTT, Phan TB, Ta HTK, Pham VH, Tran QN, Le TD, Van Vo T (2022) Fabrication of in situ crosslinking hydrogels based on oxidized alginate/N, O-carboxymethyl chitosan/β-tricalcium phosphate for bone regeneration. J Sci Adv Mater Dev 7:100503

    CAS  Google Scholar 

  18. Rao KM, Suneetha M, Zo S, Won SY, Kim HJ, Han SS (2022) Injectable nanocomposite hydrogel as wound dressing agent with tunable multifunctional property. Mater Lett 307:131062

    Article  CAS  Google Scholar 

  19. Rao KM, Narayanan KB, Uthappa UT, Park PH, Choi I, Han SS (2022) Tissue adhesive, self-healing, biocompatible, hemostasis, and antibacterial properties of fungal-derived carboxymethyl chitosan-polydopamine hydrogels. Pharmaceutics 14:1028

    Article  CAS  Google Scholar 

  20. Zou CY, Lei XX, Hu JJ, Jiang YL, Li QJ, Song YT, Zhang QY, Li-Ling J, Xie HQ (2022) Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact Mater 16:388–402

    CAS  Google Scholar 

  21. Wang L, Zhang X, Yang K, Fu YV, Xu T, Li S et al (2020) A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment. Adv Funct Mater 30:1904156

    Article  CAS  Google Scholar 

  22. Hao Y, Zhao W, Zhang H, Zheng W, Zhou Q (2022) Carboxymethyl chitosan-based hydrogels containing fibroblast growth factors for triggering diabetic wound healing. Carbohydr Polym 287:119336

    Article  CAS  Google Scholar 

  23. Pandian M, Selvaprithviraj V, Pradeep A, Rangasamy J (2021) In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. Int J Biol Macromol 188:501–511

    Article  CAS  Google Scholar 

  24. Pang J, Bi S, Kong T, Luo X, Zhou Z, Qiu K, Huang L, Chen X, Kong M (2020) Mechanically and functionally strengthened tissue adhesive of chitin whisker complexed chitosan/dextran derivatives based hydrogel. Carbohydr Polym 237:116138

    Article  CAS  Google Scholar 

  25. Rao KM, Suneetha M, Park GT, Babu AG, Han SS (2020) Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. Int J Biol Macromol 155:71–80

    Article  CAS  Google Scholar 

  26. Geng H, Dai Q, Sun H, Zhuang L, Song A, Caruso F, Hao J, Cui J (2020) Injectable and sprayable polyphenol-based hydrogels for controlling hemostasis. ACS Appl Bio Mater 3:1258–1266

    Article  CAS  Google Scholar 

  27. Hao R, Peng X, Zhang Y, Chen J, Wang T, Wang W, Zhao Y, Fan X, Chen C, Xu H (2020) Rapid hemostasis resulting from the synergism of self-assembling short peptide and O-carboxymethyl chitosan. ACS Appl Mater Interfaces 12:55574–55583

    Article  CAS  Google Scholar 

  28. Zhang W, Xin Y, Yin B, Ye GL, Wang JX, Shen JF, Li L, Yang QH (2019) Synthesis and properties of crosslinked carboxymethyl chitosan and its hemostatic and wound healing effects on liver injury of rats. J Biomater Appl 34:442–450

    Article  CAS  Google Scholar 

  29. Huang H, Chen H, Wang X, Qiu F, Liu H, Lu J, Tong L, Yang Y, Wang X, Wu H (2019) Degradable and bioadhesive alginate-based composites: an effective hemostatic agent. ACS Biomater Sci Eng 5:5498–5505

    Article  CAS  Google Scholar 

  30. Cao J, Xiao L, Shi X (2019) Injectable drug-loaded polysaccharide hybrid hydrogels for hemostasis. RSC Adv 9:36858–36866

    Article  CAS  Google Scholar 

  31. Zhang N, Yao R, Guo J, He J, Meng G, Wu F (2018) Modulation of osteogenic and haemostatic activities by tuning cationicity of genipin-crosslinked chitosan hydrogels. Colloids Surf B 166:29–36

    Article  CAS  Google Scholar 

  32. Liu W, Yang X, Li N, Xi G, Wang M, Liang B, Feng Y, Chen H, Shi C, Li W (2018) Genipin crosslinked microspheres as an effective hemostatic agent. Polym Adv Technol 29:2632–2642

    Article  CAS  Google Scholar 

  33. Ye X, Capezza AJ, Davoodi S, Wei XF, Andersson RL, Chumakov A, Roth SV, Langton M, Lundell F, Hedenqvist MS, Lendel C (2022) Robust Assembly of Cross-Linked Protein Nanofibrils into Hierarchically Structured Microfibers. ACS Nano 16:12471–12479

    Article  CAS  Google Scholar 

  34. Cheng F, Xu L, Dai J, Yi X, He J, Li H (2022) N, O-carboxymethyl chitosan/oxidized cellulose composite sponge containing ε-poly-l-lysine as a potential wound dressing for the prevention and treatment of postoperative adhesion. Int J Biol Macromol 209:2151–2164

    Article  CAS  Google Scholar 

  35. Wang S, Ji X, Chen S, Zhang C, Wang Y, Lin H, Zhao L (2022) Study of double-bonded carboxymethyl chitosan/cysteamine-modified chondroitin sulfate composite dressing for hemostatic application. Eur Polym J 162:110875

    Article  CAS  Google Scholar 

  36. Zhou M, Liao J, Li G, Yu Z, Xie D, Zhou H, Wang F, Ren Y, Xu R, Dai Y, Wang J (2022) Expandable carboxymethyl chitosan/cellulose nanofiber composite sponge for traumatic hemostasis. Carbohydr Polym 294:119805

    Article  CAS  Google Scholar 

  37. Long LY, Hu C, Liu W, Wu C, Lu L, Yang L, Wang YB (2022) Microfibrillated cellulose-enhanced carboxymethyl chitosan/oxidized starch sponge for chronic diabetic wound repair. Biomat Adv 135:112669

    Article  Google Scholar 

  38. Xia Q, Liu Z, Wang C, Zhang Z, Xu S, Han CC (2015) A biodegradable trilayered barrier membrane composed of sponge and electrospun layers: hemostasis and antiadhesion. Biomacromolecules 16:3083–3092

    Article  CAS  Google Scholar 

  39. He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, Zhang D, Yuan C, Deng J, Zhao P, Zhou Q (2021) A biodegradable antibacterial alginate/carboxymethyl chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int J Biol Macromol 167:182–192

    Article  CAS  Google Scholar 

  40. Wang L, Zhong Y, Qian C, Yang D, Nie J, Ma G (2020) A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomater 114:193–205

    Article  CAS  Google Scholar 

  41. Akin B, Ozmen MM (2022) Antimicrobial cryogel dressings towards effective wound healing. Prog Biomater 11:331–346

    Article  Google Scholar 

  42. Huang Y, Zhao X, Wang C, Chen J, Liang Y, Li Z, Han Y, Guo B (2022) High-strength anti-bacterial composite cryogel for lethal noncompressible hemorrhage hemostasis: synergistic physical hemostasis and chemical hemostasis. J Chem Eng 427:131977

    Article  CAS  Google Scholar 

  43. Hu Z, Zhang DY, Lu ST, Li PW, Li SD (2018) Chitosan-based composite materials for prospective hemostatic applications. Mar Drugs 16:273

    Article  Google Scholar 

  44. Liu L, Lv Q, Zhang Q, Zhu H, Liu W, Deng G, Wu Y, Shi C, Li H, Li L (2017) Preparation of carboxymethyl chitosan microspheres and their application in hemostasis. Disaster Med 11:660–667

    Google Scholar 

  45. Li N, Yang X, Liu W, Xi G, Wang M, Liang B, Ma Z, Feng Y, Chen H, Shi C (2018) Tannic acid cross-linked polysaccharide-based multifunctional hemostatic microparticles for the regulation of rapid wound healing. Macromol Biosci 18:1800209

    Article  Google Scholar 

  46. Shi X, Fang Q, Ding M, Wu J, Ye F, Lv Z, Jin J (2016) Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study. J Biomater Appl 30:1092–1102

    Article  CAS  Google Scholar 

  47. Zhong QK, Wu ZY, Qin YQ, Hu Z, Li SD, Yang ZM, Li PW (2019) Preparation and properties of carboxymethyl chitosan/alginate/tranexamic acid composite films. Membranes 9:11

    Article  Google Scholar 

  48. Gandhi R, Evans HM, Mahomed SR, Mahomed NN (2013) Tranexamic acid and the reduction of blood loss in total knee and hip arthroplasty: a meta-analysis. BMC Res Notes 6:1–14

    Article  Google Scholar 

  49. Sarda S, Errassifi F, Marsan O, Geffre A, Trumel C, Drouet C (2016) Adsorption of tranexamic acid on hydroxyapatite: Toward the development of biomaterials with local hemostatic activity. Mater Sci Eng C 6:1–7

    Article  Google Scholar 

  50. Zareh MM, Wassel AA, Abd Alkarem YM (2016) Electrochemical sensors for determination of tranexamic acid in pure form and pharmaceutical preparations. Int J Pharm Sci Res 1:5–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arthi, C., Nazreen, P.M., Nivedhitha Sundaram, M., Jayakumar, R. (2023). Carboxymethyl Chitosan Derivatives in Blood Clotting. In: Jayakumar, R. (eds) Multifaceted Carboxymethyl Chitosan Derivatives: Properties and Biomedical Applications. Advances in Polymer Science, vol 292. Springer, Cham. https://doi.org/10.1007/12_2023_161

Download citation

Publish with us

Policies and ethics