Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 292))

  • 123 Accesses

Abstract

Wound healing biomaterials need to reduce inflammation, deliver growth factors, inhibit microorganisms, and perform gas-permeable wound dressings. In these respects, carboxymethyl chitosan (CMCS) and its derivatives present numerous advantages as they are naturally antibacterial and have anti-inflammatory properties, and are cytocompatible with fibroblasts and keratinocytes of skin tissue. However, CMCS materials were used in carefully designed physical forms and formulations with other macromolecules and bioactive molecules because of the versatility of skin defects and the complexity of chronic wound therapies. Adhesive gel forms of CMCS-based materials showed promising results as they would adhere and cover the wound surface tightly. In addition, they help in tissue regeneration by fast biodegradation that matches the wound healing process. In preparation of CMCS-based adhesives, carboxyl-activated carbodiimide crosslinkers, and aldehyde-oxidized polysaccharides, like dextran and alginate, were successfully used. Self-healing hydrogels are a new type of wound dressing material that was prepared with Schiff base and disulfide functionalized oligomers and polymers that can make reversible covalent bonds with CMCS chains. Due to their scavenging of ROS species, anti-inflammatory properties, and therefore, increasing wound regeneration, bioactive ingredients of traditional medicine were combined with CMCS hydrogels and hence showed promising results. However, direct wound healing was achievable by careful and timely delivery of growth factors (e.g., EGF, FGF, and VEGF) within the CMCS gel matrix, and often required the use of micro- and nanoparticles-based delivery systems. Lastly, the blending of CMCS with different macromolecules was the most studied topic as the literature survey showed. Composites of CMCS improved the mechanical performances of wound dressing materials and attributed multiple functions including antimicrobial, antioxidative, angiogenic, and wound regenerating properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narayanan D, Jayakumar R, Chennazhi KP (2014) Versatile carboxymethyl chitin and chitosan nanomaterials: a review: versatile carboxymethyl chitin and chitosan nanomaterials. WIREs Nanomed Nanobiotechnol 6:574–598. https://doi.org/10.1002/wnan.1301

    Article  CAS  Google Scholar 

  2. Ruiz-Cardona L, Sanzgiri YD, Benedetti LM, Stella VJ, Topp EM (1996) Application of benzyl hyaluronate membranes as potential wound dressings: evaluation of water vapour and gas permeabilities. Biomaterials 17:1639–1643. https://doi.org/10.1016/0142-9612(95)00324-X

    Article  CAS  Google Scholar 

  3. Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F (2019) Hyaluronic acid and chitosan-based nanosystems: a new dressing generation for wound care. Expert Opin Drug Deliv 16:715–740. https://doi.org/10.1080/17425247.2019.1634051

    Article  CAS  Google Scholar 

  4. Fitridge R, Thompson MM (2011) Mechanisms of vascular disease: a reference book for vascular specialists. The University of Adelaide Press, Adelaide

    Book  Google Scholar 

  5. Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34:599–610. https://doi.org/10.1007/s12325-017-0478-y

    Article  Google Scholar 

  6. Alven S, Aderibigbe BA (2020) Chitosan and cellulose-based hydrogels for wound management. IJMS 21:9656. https://doi.org/10.3390/ijms21249656

    Article  CAS  Google Scholar 

  7. Brumberg V, Astrelina T, Malivanova T, Samoilov A (2021) Modern wound dressings: hydrogel dressings. Biomedicine 9:1235. https://doi.org/10.3390/biomedicines9091235

    Article  CAS  Google Scholar 

  8. Armstrong DG, Boulton AJM, Bus SA (2017) Diabetic foot ulcers and their recurrence. N Engl J Med 376:2367–2375. https://doi.org/10.1056/NEJMra1615439

    Article  Google Scholar 

  9. Szulc M, Lewandowska K (2022) Biomaterials based on chitosan and its derivatives and their potential in tissue engineering and other biomedical applications – a review. Molecules 28:247. https://doi.org/10.3390/molecules28010247

    Article  CAS  Google Scholar 

  10. Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55:675–709. https://doi.org/10.1016/j.pmatsci.2010.03.001

    Article  CAS  Google Scholar 

  11. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182. https://doi.org/10.1016/j.carbpol.2008.11.002

    Article  CAS  Google Scholar 

  12. Chen X-G, Wang Z, Liu W-S, Park H-J (2002) The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials 23:4609–4614. https://doi.org/10.1016/S0142-9612(02)00207-7

    Article  CAS  Google Scholar 

  13. Bovone G, Dudaryeva OY, Marco-Dufort B, Tibbitt MW (2021) Engineering hydrogel adhesion for biomedical applications via chemical design of the junction. ACS Biomater Sci Eng 7:4048–4076. https://doi.org/10.1021/acsbiomaterials.0c01677

    Article  CAS  Google Scholar 

  14. Liang M, Li Z, Gao C, Wang F, Chen Z (2018) Preparation and characterization of gelatin/sericin/carboxymethyl chitosan medical tissue glue. J Appl Biomater Funct Mater 16:97–106. https://doi.org/10.5301/jabfm.5000384

    Article  CAS  Google Scholar 

  15. Pang J, Bi S, Kong T, Luo X, Zhou Z, Qiu K, Huang L, Chen X, Kong M (2020) Mechanically and functionally strengthened tissue adhesive of chitin whisker complexed chitosan/dextran derivatives based hydrogel. Carbohydr Polym 237:116138. https://doi.org/10.1016/j.carbpol.2020.116138

    Article  CAS  Google Scholar 

  16. Patel DK, Ganguly K, Hexiu J, Dutta SD, Patil TV, Lim K-T (2022) Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing. Carbohydr Polym 284:119202. https://doi.org/10.1016/j.carbpol.2022.119202

    Article  CAS  Google Scholar 

  17. Yuan L, Fan W, Han L, Guo C, Yan Z, Zhu M, Mo X (2018) Evaluation of hydrogels for soft tissue adhesives in vitro and in vivo analyses. Front Mater Sci 12:95–104. https://doi.org/10.1007/s11706-018-0405-4

    Article  Google Scholar 

  18. Li Z, Yuan B, Dong X, Duan L, Tian H, He C, Chen X (2015) Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing. RSC Adv 5:94248–94256. https://doi.org/10.1039/C5RA16912G

    Article  CAS  Google Scholar 

  19. Del Prado-Audelo ML, Caballero-Florán IH, Mendoza-Muñoz N, Giraldo-Gomez D, Sharifi-Rad J, Patra JK, González-Torres M, Florán B, Cortes H, Leyva-Gómez G (2022) Current progress of self-healing polymers for medical applications in tissue engineering. Iran Polym J 31:7–29. https://doi.org/10.1007/s13726-021-00943-8

    Article  CAS  Google Scholar 

  20. Wang Y, Adokoh CK, Narain R (2018) Recent development and biomedical applications of self-healing hydrogels. Expert Opin Drug Deliv 15:77–91. https://doi.org/10.1080/17425247.2017.1360865

    Article  CAS  Google Scholar 

  21. Li J, Yu F, Chen G, Liu J, Li X-L, Cheng B, Mo X-M, Chen C, Pan J-F (2020) Moist-retaining, self-recoverable, bioadhesive, and transparent in situ forming hydrogels to accelerate wound healing. ACS Appl Mater Interfaces 12:2023–2038. https://doi.org/10.1021/acsami.9b17180

    Article  CAS  Google Scholar 

  22. Kong B, Liu R, Cheng Y, Cai X, Liu J, Zhang D, Tan H, Zhao Y (2022) Natural biopolymers derived hydrogels with injectable, self-healing, and tissue adhesive abilities for wound healing. Nano Res. https://doi.org/10.1007/s12274-022-4936-8

  23. Yu R, Cornette de Saint-Cyr L, Soussan L, Barboiu M, Li S (2021) Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications. Int J Biol Macromol 167:1146–1155. https://doi.org/10.1016/j.ijbiomac.2020.11.068

    Article  CAS  Google Scholar 

  24. Zhang Z, Bu J, Li B, Xuan H, Jin Y, Yuan H (2022) Dynamic double cross-linked self-healing polysaccharide hydrogel wound dressing based on Schiff Base and thiol-alkynone reactions. IJMS 23:13817. https://doi.org/10.3390/ijms232213817

    Article  CAS  Google Scholar 

  25. Pandian M, Selvaprithviraj V, Pradeep A, Rangasamy J (2021) In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. Int J Biol Macromol 188:501–511. https://doi.org/10.1016/j.ijbiomac.2021.08.040

    Article  CAS  Google Scholar 

  26. Janahmadi Z, Motlagh MR, Zaeri S (2019) Enhancing rat full-thickness skin wounds with a mixed aloe/chitosan gel. Formosan J Surg 52:84–91. https://doi.org/10.4103/fjs.fjs_109_18

    Article  Google Scholar 

  27. Zhang W, Qi X, Zhao Y, Liu Y, Xu L, Song X, Xiao C, Yuan X, Zhang J, Hou M (2020) Study of injectable blueberry anthocyanins-loaded hydrogel for promoting full-thickness wound healing. Int J Pharm 586:119543. https://doi.org/10.1016/j.ijpharm.2020.119543

    Article  CAS  Google Scholar 

  28. Sakthiguru N, Sithique MA (2020) Preparation and in vitro biological evaluation of lawsone loaded O-carboxymethyl chitosan/zinc oxide nanocomposite for wound-healing application. ChemistrySelect 5:2710–2718. https://doi.org/10.1002/slct.201904159

    Article  CAS  Google Scholar 

  29. Heo S-K, Yi H-S, Yun H-J, Ko C-H, Choi J-W, Park S-D (2010) Ethylacetate extract from Draconis Resina inhibits LPS-induced inflammatory responses in vascular smooth muscle cells and macrophages via suppression of ROS production. Food Chem Toxicol 48:1129–1136. https://doi.org/10.1016/j.fct.2009.06.043

    Article  CAS  Google Scholar 

  30. Xu L, Zhou Z, Chen Y, Lu H, Hu P (2022) Resina Draconis particles encapsulated in a hyaluronic-acid-based hydrogel to treat complex burn wounds. Pharmaceutics 14:2087. https://doi.org/10.3390/pharmaceutics14102087

    Article  CAS  Google Scholar 

  31. Yang C, Chen Y, Huang H, Fan S, Yang C, Wang L, Li W, Niu W, Liao J (2021) ROS-eliminating carboxymethyl chitosan hydrogel to enhance burn wound-healing efficacy. Front Pharmacol 12:679580. https://doi.org/10.3389/fphar.2021.679580

    Article  CAS  Google Scholar 

  32. Montaser AS, Jlassi K, Ramadan MA, Sleem AA, Attia MF (2021) Alginate, gelatin, and carboxymethyl cellulose coated nonwoven fabrics containing antimicrobial AgNPs for skin wound healing in rats. Int J Biol Macromol 173:203–210. https://doi.org/10.1016/j.ijbiomac.2021.01.123

    Article  CAS  Google Scholar 

  33. Ezzat M, Ghanim M, Nageh H, Hassanin AH, Abdel-Moneim A (2016) Antimicrobial activity of O-carboxymethyl chitosan nanofibers containing silver nanoparticles synthesized by green method. JNanoR 40:136–145. https://doi.org/10.4028/www.scientific.net/JNanoR.40.136

    Article  CAS  Google Scholar 

  34. Jiang Z, Li L, Li H, Xia L, Hu H, Wang S, Liu C, Chi J, Yang Y, Song F, Liu W, Han B (2022) Preparation, biocompatibility, and wound healing effects of O-carboxymethyl chitosan nonwoven fabrics in partial-thickness burn model. Carbohydr Polym 280:119032. https://doi.org/10.1016/j.carbpol.2021.119032

    Article  CAS  Google Scholar 

  35. Lee GD, Doh SJ, Kim Y, Im JN (2020) Preparation and characterization of carboxymethyl chitosan nonwovens for wound dressing. Fibers Polym 21:1894–1905. https://doi.org/10.1007/s12221-020-1241-6

    Article  CAS  Google Scholar 

  36. Chen K, Tong C, Yang J, Cong P, Liu Y, Shi X, Liu X, Zhang J, Zou R, Xiao K, Ni Y, Xu L, Hou M, Jin H, Liu Y (2021) Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition. J Mater Sci Technol 63:236–245. https://doi.org/10.1016/j.jmst.2020.06.001

    Article  CAS  Google Scholar 

  37. Chen Z, Zhang X, Liang J, Ji Y, Zhou Y, Fang H (2021) Preparation of silk fibroin/carboxymethyl chitosan hydrogel under low voltage as a wound dressing. IJMS 22:7610. https://doi.org/10.3390/ijms22147610

    Article  CAS  Google Scholar 

  38. Cui L, Li J, Guan S, Zhang K, Zhang K, Li J (2022) Injectable multifunctional CMC/HA-DA hydrogel for repairing skin injury. Mater Today Bio 14:100257. https://doi.org/10.1016/j.mtbio.2022.100257

    Article  CAS  Google Scholar 

  39. Hao Y, Zhao W, Zhang H, Zheng W, Zhou Q (2022) Carboxymethyl chitosan-based hydrogels containing fibroblast growth factors for triggering diabetic wound healing. Carbohydr Polym 287:119336. https://doi.org/10.1016/j.carbpol.2022.119336

    Article  CAS  Google Scholar 

  40. Jin L, Yoon S-J, Lee DH, Pyun YC, Kim WY, Lee JH, Khang G, Chun HJ, Yang DH (2021) Preparation of foam dressings based on gelatin, hyaluronic acid, and carboxymethyl chitosan containing fibroblast growth factor-7 for dermal regeneration. Polymers 13:3279. https://doi.org/10.3390/polym13193279

    Article  CAS  Google Scholar 

  41. Liu Q, Huang Y, Lan Y, Zuo Q, Li C, Zhang Y, Guo R, Xue W (2017) Acceleration of skin regeneration in full-thickness burns by incorporation of bFGF-loaded alginate microspheres into a CMCS-PVA hydrogel: acceleration of skin regeneration in burns by bFGF microspheres/CMCS-PVA. J Tissue Eng Regen Med 11:1562–1573. https://doi.org/10.1002/term.2057

    Article  CAS  Google Scholar 

  42. Pan H, Fan D, Cao W, Zhu C, Duan Z, Fu R, Li X, Ma X (2017) Preparation and characterization of breathable hemostatic hydrogel dressings and determination of their effects on full-thickness defects. Polymers 9:727. https://doi.org/10.3390/polym9120727

    Article  CAS  Google Scholar 

  43. Moura LIF, Dias AMA, Leal EC, Carvalho L, de Sousa HC, Carvalho E (2014) Chitosan-based dressings loaded with neurotensin – an efficient strategy to improve early diabetic wound healing. Acta Biomater 10:843–857. https://doi.org/10.1016/j.actbio.2013.09.040

    Article  CAS  Google Scholar 

  44. Wang L, Sun L, Gu Z, Li W, Guo L, Ma S, Guo L, Zhang W, Han B, Chang J (2022) N-carboxymethyl chitosan/sodium alginate composite hydrogel loading plasmid DNA as a promising gene activated matrix for in-situ burn wound treatment. Bioact Mater 15:330–342. https://doi.org/10.1016/j.bioactmat.2021.12.012

    Article  CAS  Google Scholar 

  45. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:1–15. https://doi.org/10.1155/2015/821279

    Article  CAS  Google Scholar 

  46. Fouda MMG, Ajarem JS, Maodaa SN, Allam AA, Taher MM, Ahmed MK (2020) Carboxymethyl cellulose supported green synthetic features of gold nanoparticles: antioxidant, cell viability, and antibacterial effectiveness. Synth Met 269:116553. https://doi.org/10.1016/j.synthmet.2020.116553

    Article  CAS  Google Scholar 

  47. Hu S, Cai X, Qu X, Yu B, Yan C, Yang J, Li F, Zheng Y, Shi X (2019) Preparation of biocompatible wound dressings with long-term antimicrobial activity through covalent bonding of antibiotic agents to natural polymers. Int J Biol Macromol 123:1320–1330. https://doi.org/10.1016/j.ijbiomac.2018.09.122

    Article  CAS  Google Scholar 

  48. Huang S, Chen H-J, Deng Y-P, You X, Fang Q, Lin M (2020) Preparation of novel stable microbicidal hydrogel films as potential wound dressing. Polym Degrad Stab 181:109349. https://doi.org/10.1016/j.polymdegradstab.2020.109349

    Article  CAS  Google Scholar 

  49. Huang Y-C, Lee C-T, Don T-M (2021) Physicochemical characteristics of thermo-responsive gelatin membranes containing carboxymethyl chitosan and poly(N-isopropylacrylamide-co-acrylic acid). J Polym Res 28:173. https://doi.org/10.1007/s10965-021-02534-w

    Article  CAS  Google Scholar 

  50. Islam MM, Islam R, Mahmudul Hassan SM, Karim MR, Rahman MM, Rahman S, Nur Hossain M, Islam D, Aftab Ali Shaikh M, Georghiou PE (2023) Carboxymethyl chitin and chitosan derivatives: synthesis, characterization and antibacterial activity. Carbohydr Polym Technol Appl 5:100283. https://doi.org/10.1016/j.carpta.2023.100283

    Article  CAS  Google Scholar 

  51. Long Y, Zhang C, Chen L, Di T, Chen L, Tang L, Luo K, Yan Y, Tong P, Xiang J (2021) Healing effect and underlying mechanism of silver nanoparticles prepared using carboxymethyl chitosan under solar irradiation. J Renew Mater 9:1075–1085. https://doi.org/10.32604/jrm.2021.014555

    Article  CAS  Google Scholar 

  52. Wang M, Huang H, Ma X, Huang C, Peng X (2021) Copper metal-organic framework embedded carboxymethyl chitosan-g-glutathione/polyacrylamide hydrogels for killing bacteria and promoting wound healing. Int J Biol Macromol 187:699–709. https://doi.org/10.1016/j.ijbiomac.2021.07.139

    Article  CAS  Google Scholar 

  53. Fan L, Yi J, Tong J, Zhou X, Ge H, Zou S, Wen H, Nie M (2016) Preparation and characterization of oxidized konjac glucomannan/carboxymethyl chitosan/graphene oxide hydrogel. Int J Biol Macromol 91:358–367. https://doi.org/10.1016/j.ijbiomac.2016.05.042

    Article  CAS  Google Scholar 

  54. Huang W, Wang Y, Huang Z, Wang X, Chen L, Zhang Y, Zhang L (2018) On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing. ACS Appl Mater Interfaces 10:41076–41088. https://doi.org/10.1021/acsami.8b14526

    Article  CAS  Google Scholar 

  55. Zhang C, Yang X, Hu W, Han X, Fan L, Tao S (2020) Preparation and characterization of carboxymethyl chitosan/collagen peptide/oxidized konjac composite hydrogel. Int J Biol Macromol 149:31–40. https://doi.org/10.1016/j.ijbiomac.2020.01.127

    Article  CAS  Google Scholar 

  56. Li P, Liu S, Yang X, Du S, Tang W, Cao W, Zhou J, Gong X, Xing X (2021) Low-drug resistance carbon quantum dots decorated injectable self-healing hydrogel with potent antibiofilm property and cutaneous wound healing. Chem Eng J 403:126387. https://doi.org/10.1016/j.cej.2020.126387

    Article  CAS  Google Scholar 

  57. Oyama J, Fernandes Herculano Ramos-Milaré ÁC, Lopes Lera-Nonose DSS, Nesi-Reis V, Galhardo Demarchi I, Alessi Aristides SM, Juarez Vieira Teixeira J, Gomes Verzignassi Silveira T, Campana Lonardoni MV (2020) Photodynamic therapy in wound healing in vivo: a systematic review. Photodiagnosis Photodyn Ther 30:101682. https://doi.org/10.1016/j.pdpdt.2020.101682

    Article  CAS  Google Scholar 

  58. Mai B, Jia M, Liu S, Sheng Z, Li M, Gao Y, Wang X, Liu Q, Wang P (2020) Smart hydrogel-based DVDMS/bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl Mater Interfaces 12:10156–10169. https://doi.org/10.1021/acsami.0c00298

    Article  CAS  Google Scholar 

  59. Mohandas A, Nimal TR, Das V, Shankarappa SA, Biswas R, Jayakumar R (2015) Drug loaded bi-layered sponge for wound management in hyperfibrinolytic conditions. J Mater Chem B 3:5795–5805. https://doi.org/10.1039/C5TB00568J

    Article  CAS  Google Scholar 

  60. Raisi A, Asefnejad A, Shahali M, Sadat Kazerouni Z, Kolooshani A, Saber-Samandari S, Moghadas B, Khandan A (2020) Preparation, characterization, and antibacterial studies of N, O-carboxymethyl chitosan as a wound dressing for bedsore application. Arch Trauma Res 9:181. https://doi.org/10.4103/atr.atr_10_20

    Article  Google Scholar 

  61. Rao KM, Suneetha M, Park GT, Babu AG, Han SS (2020) Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. Int J Biol Macromol 155:71–80. https://doi.org/10.1016/j.ijbiomac.2020.03.170

    Article  CAS  Google Scholar 

  62. Rao KM, Sudhakar K, Suneetha M, Won SY, Han SS (2021) Fungal-derived carboxymethyl chitosan blended with polyvinyl alcohol as membranes for wound dressings. Int J Biol Macromol 190:792–800. https://doi.org/10.1016/j.ijbiomac.2021.09.034

    Article  CAS  Google Scholar 

  63. Xia G, Liu Y, Tian M, Gao P, Bao Z, Bai X, Yu X, Lang X, Hu S, Chen X (2017) Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. J Mater Chem B 5:3172–3185. https://doi.org/10.1039/C7TB00479F

    Article  CAS  Google Scholar 

  64. Yu J, Wang P, Yin M, Zhang K, Wang X, Han B (2022) Carboxymethyl chitosan-grafted polyvinylpyrrolidone-iodine microspheres for promoting the healing of chronic wounds. Bioengineered 13:8735–8746. https://doi.org/10.1080/21655979.2022.2054911

    Article  CAS  Google Scholar 

  65. Zhang P, Liu C (2020) Enhancement of skin wound healing by rhEGF-loaded carboxymethyl chitosan nanoparticles. Polymers 12:1612. https://doi.org/10.3390/polym12071612

    Article  CAS  Google Scholar 

  66. Zou P, Lee W-H, Gao Z, Qin D, Wang Y, Liu J, Sun T, Gao Y (2020) Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles. Carbohydr Polym 232:115786. https://doi.org/10.1016/j.carbpol.2019.115786

    Article  CAS  Google Scholar 

  67. Ruiz-Galindo O, Zizumbo-López A, Licea-Claveríe A, Pérez-Sicairos S (2019) Poly(2-hydroxyethyl methacrylate) hydrogel: from a brittle material to a nanofilled semi-interpenetrating polymer network with potential application in wound dressings. Polym Int 68:1113–1122. https://doi.org/10.1002/pi.5801

    Article  CAS  Google Scholar 

  68. Kalai Selvan N, Shanmugarajan TS, Uppuluri VNVA (2020) Hydrogel based scaffolding polymeric biomaterials: approaches towards skin tissue regeneration. J Drug Deliv Sci Technol 55:101456. https://doi.org/10.1016/j.jddst.2019.101456

    Article  CAS  Google Scholar 

  69. Gao Y, Zhang X, Jin X (2019) Preparation and properties of minocycline-loaded carboxymethyl chitosan gel/alginate nonwovens composite wound dressings. Mar Drugs 17:575. https://doi.org/10.3390/md17100575

    Article  CAS  Google Scholar 

  70. Gao X, Wen M, Liu Y, Hou T, Niu B, An M (2022) Synthesis and characterization of PU/PLCL/CMCS electrospun scaffolds for skin tissue engineering. Polymers 14:5029. https://doi.org/10.3390/polym14225029

    Article  CAS  Google Scholar 

  71. He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, Zhang D, Yuan C, Deng J, Zhao P, Zhou Q (2021) A biodegradable antibacterial alginate/carboxymethyl chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int J Biol Macromol 167:182–192. https://doi.org/10.1016/j.ijbiomac.2020.11.168

    Article  CAS  Google Scholar 

  72. He Y, Li Y, Sun Y, Zhao S, Feng M, Xu G, Zhu H, Ji P, Mao H, He Y, Gu Z (2021) A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydr Polym 261:117870. https://doi.org/10.1016/j.carbpol.2021.117870

    Article  CAS  Google Scholar 

  73. Lansdown ABG, Mirastschijski U, Stubbs N, Scanlon E, Ågren MS (2007) Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen 15:2–16. https://doi.org/10.1111/j.1524-475X.2006.00179.x

    Article  Google Scholar 

  74. Mao Y, Pan M, Yang H, Lin X, Yang L (2020) Injectable hydrogel wound dressing based on strontium ion cross-linked starch. Front Mater Sci 14:232–241. https://doi.org/10.1007/s11706-020-0508-6

    Article  Google Scholar 

  75. Li Z, Chen S, Wu B, Liu Z, Cheng L, Bao Y, Ma Y, Chen L, Tong X, Dai F (2020) Multifunctional dual ionic-covalent membranes for wound healing. ACS Biomater Sci Eng 6:6949–6960. https://doi.org/10.1021/acsbiomaterials.0c01512

    Article  CAS  Google Scholar 

  76. Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S (2013) Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng C 33:4816–4824. https://doi.org/10.1016/j.msec.2013.07.044

    Article  CAS  Google Scholar 

  77. Zhang L, Tai Y, Liu X, Liu Y, Dong Y, Liu Y, Yang C, Kong D, Qi C, Wang S, Midgley AC (2021) Natural polymeric and peptide-loaded composite wound dressings for scar prevention. Appl Mater Today 25:101186. https://doi.org/10.1016/j.apmt.2021.101186

    Article  Google Scholar 

  78. Mo C, Xiang L, Chen Y (2021) Advances in injectable and self-healing polysaccharide hydrogel based on the Schiff Base reaction. Macromol Rapid Commun 42:2100025. https://doi.org/10.1002/marc.202100025

    Article  CAS  Google Scholar 

  79. Li H, Cheng F, Wei X, Yi X, Tang S, Wang Z, Zhang YS, He J, Huang Y (2021) Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. Mater Sci Eng C 118:111324. https://doi.org/10.1016/j.msec.2020.111324

    Article  CAS  Google Scholar 

  80. Jiang Z, Wang Y, Li L, Hu H, Wang S, Zou M, Liu W, Han B (2022) Preparation, characterization, and biological evaluation of transparent thin carboxymethyl-chitosan/oxidized carboxymethyl cellulose films as new wound dressings. Macromol Biosci 22:2100308. https://doi.org/10.1002/mabi.202100308

    Article  CAS  Google Scholar 

  81. Li S, Wang L, Zhang J, Zhao Z, Yu W, Tan Z, Gao P, Chen X (2022) Combination of natural polyanions and polycations based on interfacial complexation for multi-functionalization of wound dressings. Front Bioeng Biotechnol 10:1006584. https://doi.org/10.3389/fbioe.2022.1006584

    Article  Google Scholar 

  82. Nguyen NT-P, Nguyen LV-H, Tran NM-P, Nguyen DT, Nguyen TN-T, Tran HA, Dang NN-T, Vo TV, Nguyen T-H (2019) The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. Mater Sci Eng C 103:109670. https://doi.org/10.1016/j.msec.2019.04.049

    Article  CAS  Google Scholar 

  83. Pang HT, Chen XG, Ji QX, Zhong DY (2008) Preparation and function of composite asymmetric chitosan/CM-chitosan membrane. J Mater Sci Mater Med 19:1413–1417. https://doi.org/10.1007/s10856-007-3168-5

    Article  CAS  Google Scholar 

  84. Sun L, Li M, Gong T, Feng J (2021) Preparation and evaluation of an innovative antibacterial bi-layered composite dressing for skin wound healing. J Tissue Viability 30:454–461. https://doi.org/10.1016/j.jtv.2021.04.008

    Article  Google Scholar 

  85. Tu H, Wu G, Yi Y, Huang M, Liu R, Shi X, Deng H (2019) Layer-by-layer immobilization of amphoteric carboxymethyl chitosan onto biocompatible silk fibroin nanofibrous mats. Carbohydr Polym 210:9–16. https://doi.org/10.1016/j.carbpol.2019.01.047

    Article  CAS  Google Scholar 

  86. Wang X, Zhang D, Wang J, Tang R, Wei B, Jiang Q (2017) Succinyl pullulan-crosslinked carboxymethyl chitosan sponges for potential wound dressing. Int J Polym Mater Polym Biomater 66:61–70. https://doi.org/10.1080/00914037.2016.1182912

    Article  CAS  Google Scholar 

  87. Luís Â, Duarte A, Gominho J, Domingues F, Duarte AP (2016) Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind Crop Prod 79:274–282. https://doi.org/10.1016/j.indcrop.2015.10.055

    Article  CAS  Google Scholar 

  88. Wang H, Liu Y, Cai K, Zhang B, Tang S, Zhang W, Liu W (2021) Antibacterial polysaccharide-based hydrogel dressing containing plant essential oil for burn wound healing. Burns Trauma 9:tkab041. https://doi.org/10.1093/burnst/tkab041

    Article  Google Scholar 

  89. Yang C, Xu L, Zhou Y, Zhang X, Huang X, Wang M, Han Y, Zhai M, Wei S, Li J (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym 82:1297–1305. https://doi.org/10.1016/j.carbpol.2010.07.013

    Article  CAS  Google Scholar 

  90. Norzain NA, Lin W-C (2022) Fibroblast cell responses to physical cues of the triangular prism micropattern and aligned nanofibrous scaffold for promoting wound closure. Mater Des 220:110864. https://doi.org/10.1016/j.matdes.2022.110864

    Article  CAS  Google Scholar 

  91. Wang D, Zhang N, Meng G, He J, Wu F (2020) The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing. Colloids Surf B Biointerfaces 194:111191. https://doi.org/10.1016/j.colsurfb.2020.111191

    Article  CAS  Google Scholar 

  92. Basu A, Kunduru KR, Abtew E, Domb AJ (2015) Polysaccharide-based conjugates for biomedical applications. Bioconjug Chem 26:1396–1412. https://doi.org/10.1021/acs.bioconjchem.5b00242

    Article  CAS  Google Scholar 

  93. Hansson A, Hashom N, Falson F, Rousselle P, Jordan O, Borchard G (2012) In vitro evaluation of an RGD-functionalized chitosan derivative for enhanced cell adhesion. Carbohydr Polym 90:1494–1500. https://doi.org/10.1016/j.carbpol.2012.07.020

    Article  CAS  Google Scholar 

  94. Patrulea V, Hirt-Burri N, Jeannerat A, Applegate LA, Ostafe V, Jordan O, Borchard G (2016) Peptide-decorated chitosan derivatives enhance fibroblast adhesion and proliferation in wound healing. Carbohydr Polym 142:114–123. https://doi.org/10.1016/j.carbpol.2016.01.045

    Article  CAS  Google Scholar 

  95. Wei Q, Wang Y, Wang H, Qiao L, Jiang Y, Ma G, Zhang W, Hu Z (2022) Photo-induced adhesive carboxymethyl chitosan-based hydrogels with antibacterial and antioxidant properties for accelerating wound healing. Carbohydr Polym 278:119000. https://doi.org/10.1016/j.carbpol.2021.119000

    Article  CAS  Google Scholar 

  96. Wei Q, Ma J, Jia L, Zhao H, Dong Y, Jiang Y, Zhang W, Hu Z (2023) Enzymatic one-pot preparation of carboxylmethyl chitosan-based hydrogel with inherent antioxidant and antibacterial properties for accelerating wound healing. Int J Biol Macromol 226:823–832. https://doi.org/10.1016/j.ijbiomac.2022.12.035

    Article  CAS  Google Scholar 

  97. Hong S, Sunwoo JH, Kim JS, Tchah H, Hwang C (2019) Conjugation of carboxymethyl cellulose and dopamine for cell sheet harvesting. Biomater Sci 7:139–148. https://doi.org/10.1039/C8BM00971F

    Article  CAS  Google Scholar 

  98. Wu S, Zhang Z, Xu R, Wei S, Xiong F, Cui W, Li B, Xue Y, Xuan H, Yuan H (2022) A spray-filming, tissue-adhesive, and bioactive polysaccharide self-healing hydrogel for skin regeneration. Mater Des 217:110669. https://doi.org/10.1016/j.matdes.2022.110669

    Article  CAS  Google Scholar 

  99. Bhagat V, Becker ML (2017) Degradable adhesives for surgery and tissue engineering. Biomacromolecules 18:3009–3039. https://doi.org/10.1021/acs.biomac.7b00969

    Article  CAS  Google Scholar 

  100. Mistry K, van der Steen B, Clifford T, van Holthoon F, Kleinnijenhuis A, Prawitt J, Labus M, Vanhoecke B, Lovat PE, McConnell A (2021) Potentiating cutaneous wound healing in young and aged skin with nutraceutical collagen peptides. Clin Exp Dermatol 46:109–117. https://doi.org/10.1111/ced.14392

    Article  CAS  Google Scholar 

  101. Cheng Y, Lu S, Hu Z, Zhang B, Li S, Hong P (2020) Marine collagen peptide grafted carboxymethyl chitosan: optimization preparation and coagulation evaluation. Int J Biol Macromol 164:3953–3964. https://doi.org/10.1016/j.ijbiomac.2020.09.006

    Article  CAS  Google Scholar 

  102. Chen R-N, Wang G-M, Chen C-H, Ho H-O, Sheu M-T (2006) Development of N, O-(carboxymethyl)chitosan/collagen matrixes as a wound dressing. Biomacromolecules 7:1058–1064. https://doi.org/10.1021/bm050754b

    Article  CAS  Google Scholar 

  103. Zhu X, Zhou X, Yi J, Tong J, Wu H, Fan L (2014) Preparation and biological activity of quaternized carboxymethyl chitosan conjugated with collagen peptide. Int J Biol Macromol 70:300–305. https://doi.org/10.1016/j.ijbiomac.2014.06.045

    Article  CAS  Google Scholar 

  104. Banerjee P, Suguna L, Shanthi C (2015) Wound healing activity of a collagen-derived cryptic peptide. Amino Acids 47:317–328. https://doi.org/10.1007/s00726-014-1860-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan T. Baran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baran, E.T. (2023). Functionalized Carboxymethyl Chitosan Derivatives in Wound Healing. In: Jayakumar, R. (eds) Multifaceted Carboxymethyl Chitosan Derivatives: Properties and Biomedical Applications. Advances in Polymer Science, vol 292. Springer, Cham. https://doi.org/10.1007/12_2023_153

Download citation

Publish with us

Policies and ethics