Skip to main content

Poly(lactic acid)-Based Materials for Automotive Applications

  • Chapter
  • First Online:
Industrial Applications of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 282))

Abstract

As a result of increasingly stringent environmental regulations being imposed on the automotive sector, ecofriendly alternative solutions are being sought through the use of next-generation bioplastics and biocomposites as novel vehicle components. Thanks to its renewability, low cost, high strength, and rigidity, poly(lactic acid), PLLA, is considered a key material for such applications. Nevertheless, to compete with traditional petroleum-sourced plastics some of the properties of PLLA must be improved to fulfill the requirements of the automotive industry, such as heat resistance, mechanical performance (especially in terms of ductility and impact toughness), and durability. This review focuses on the properties required for plastics used in the automotive industry and discusses recent breakthroughs regarding PLLA and PLLA-based materials in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABS:

Acrylate-butadiene-styrene

ATBC:

Acetyltributylcitrate

BioPA:

Bio-polyamide

BioPE:

Bio-polyethylene

BS:

Biomax® Strong (Commercial impact modifier)

CE:

Chain extender

CL25A:

Cloisite® 25A

DEHA:

Bis(2-ethylhexyl) adipate

DOA:

Dioctyl adipate

DSC:

Differential scanning calorimetry

EBS:

Ethylene bis-stearamide (nucleating agent)

EMA-GMA:

Ethylene-methyl acrylate-glycidyl methacrylate

ENR:

Epoxidized natural rubber

GTA:

Glyceryl triacetate

HDT:

Heat deflection temperature

HNT:

Halloysite nanotube

NCH:

Nylon-clay hybrid

OEM:

Original equipment manufacturer

OMC:

Organic modified clay

OMLS:

Organically modified layered silicate

PA:

Polyamide

PBGA:

Oligomericpoly(1,3-butylene glycol adipate)

PC:

Polycarbonate

PCL:

Polycaprolactone

PDLA:

Poly(d-lactic acid)

PEBA:

Polyether block amide

PEG:

Polyethylene glycol

PET:

Polyethylene terephtalate

PHA:

Polyhydroxyalkanoate

PLLA:

Poly(l,d-lactic acid)

PLS:

Polymer-layered silicate nanocomposites

PMMA:

Poly(methyl methacrylate)

PP:

Polypropylene

PPA:

Poly(1,2-propylene glycol adipate)

PS:

Polystyrene

PTT:

Polytrimethylene terephtalate

PU:

Polyurethane

RH:

Relative humidity

sc-PLA:

Stereocomplex of polylactide

TAC:

Triacetin

TBC:

Tributylcitrate

TPU:

Thermoplastic polyurethane

References

  1. Brostow W, Datashvili T (2016) Environmental impact of natural polymers. In: Natural polymers. Springer, Berlin, pp 315–338

    Google Scholar 

  2. Akampumuza O et al (2016) Review of the applications of biocomposites in the automotive industry. Polym Compos. doi:10.1002/pc.23847

    Article  Google Scholar 

  3. Niaounakis M (2015) Automotive applications. In: Biopolymers: applications and trends. William Andrew, Oxford, pp. 257–289

    Chapter  Google Scholar 

  4. Garlotta DA (2001) Literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  5. Avérous L (2008) Polylactic acid: synthesis, properties and applications. In: Gandini MNB (ed) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp. 433–450

    Chapter  Google Scholar 

  6. Maxwell J (1994) Plastics in the automotive industry. Elsevier, Amsterdam

    Book  Google Scholar 

  7. Auras RA et al (2011) Poly(lactic acid): synthesis, structures, properties, processing, and applications, vol 10. Wiley, Hoboken

    Google Scholar 

  8. Reynolds N, Ramamohan AB (2013) High-volume thermoplastic composite technology for automotive structures. In: Advanced composite materials for automotive applications. Wiley, Hoboken, pp 29–50

    Google Scholar 

  9. Rowe J (2012) Advanced materials in automotive engineering. Elsevier, Amsterdam

    Book  Google Scholar 

  10. Götz Klink GR, Znojek B, Wadivkar O (2012) Plastics. The future for automakers and chemical companies. A.T. Kearney, Korea

    Google Scholar 

  11. Swift TK, Moore M, Sanchez E (2015) Plastics and polymer composites in light vehicles. Economics and Statistics Department/American Chemistry Council

    Google Scholar 

  12. Philp JC et al (2013) Biobased plastics in a bioeconomy. Trends Biotechnol 31(2):65–67

    Article  PubMed  CAS  Google Scholar 

  13. Thielen M (2012) Bioplastics: basics, applications, markets. Polymedia, Mönchengladbach

    Google Scholar 

  14. Pilla S (2011) Handbook of bioplastics and biocomposites engineering applications, vol 81. Wiley, Hoboken

    Book  Google Scholar 

  15. Siracusa V et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    Article  CAS  Google Scholar 

  16. European Bioplastics (2013) Applications for bioplastics. European Bioplastics, Berlin. http://www.european-bioplastics.org/market/applications-sectors/

  17. Lee E, Flanigan C (2012) Automotive plastics and composites. In: Encyclopedia of polymer science and technology. Wiley, Hoboken

    Google Scholar 

  18. Szeteiová K (2010) Automotive materials: plastics in automotive markets today. Institute of Production Technologies, Slovak University of Technology, Bratislava

    Google Scholar 

  19. Andrea DJ, Brown WR (1993) Material selection processes in the automotive industry. OSAT, Michigan

    Google Scholar 

  20. Ghassemieh E (2011). Materials in automotive application, state of the art and prospects. In: Chiaberge M (ed) New trends and developments in automotive industry. Intech, Rijeka, pp 366–394. doi:10.5772/13286

  21. Weber M, Weisbrod J (2003) Requirements engineering in automotive development-experiences and challenges. In: IEEE joint international conference on requirements engineering, 2002. IEEE, pp 331–340. doi:10.1109/MS.2003.1159025

  22. Biron M (2012) Thermoplastics and thermoplastic composites. William Andrew, Oxford

    Google Scholar 

  23. Babu RP et al (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):1–16

    Article  Google Scholar 

  24. Fiori S (2014) Industrial uses of PLA. In: Jiménez A, Peltzer M, Ruseckaite R (eds) Poly(lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry, London, pp 315–333. doi:10.1039/9781782624806-00315

  25. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59(1–3):145–152

    Article  CAS  Google Scholar 

  26. Signori F et al (2009) Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym Degrad Stab 94(1):74–82

    Article  CAS  Google Scholar 

  27. Song J et al (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Lond B Biol Sci 364(1526):2127–2139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Vink ET et al (2007) Original research: the eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Ind Biotechnol 3(1):58–81

    Article  CAS  Google Scholar 

  29. Jamshidian M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571

    Article  CAS  Google Scholar 

  30. Sin LT et al (2012) Polylactic acid: PLA biopolymer technology and applications. William Andrew, Oxford

    Google Scholar 

  31. Dusselier M et al (2015) Shape-selective zeolite catalysis for bioplastics production. Science 349(6243):78–80

    Article  PubMed  CAS  Google Scholar 

  32. Achmad F et al (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151(1–3):342–350

    Article  CAS  Google Scholar 

  33. Gerrard J, Kandlikar M (2007) Is European end-of-life vehicle legislation living up to expectations? Assessing the impact of the ELV directive on ‘green’ innovation and vehicle recovery. J Clean Prod 15(1):17–27

    Article  Google Scholar 

  34. Madhavan Nampoothiri K et al (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  PubMed  CAS  Google Scholar 

  35. Nova Institute (2012) Growth in PLA bioplastics: a production capacity of over 800,000 tonnes expected by 2020. Bio-based News, 7 Aug 2012

    Google Scholar 

  36. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798

    Article  CAS  Google Scholar 

  37. Bhardwaj R, Mohanty AK (2007) Advances in the properties of polylactides based materials: a review. J Biobased Mater Bioenergy 1(2):191–209

    Article  Google Scholar 

  38. Canessa E et al (2013) Low-cost 3D printing for science, education and sustainable development. ICPT, Trieste. http://sdu.ictp.it/3D/book.html

  39. Campbell T et al (2011) Could 3D printing change the world. Technologies, potential, and implications of additive manufacturing. Atlantic Council, Washington

    Google Scholar 

  40. Reeves P, Mendis D (2015) The current status and impact of 3D printing within the industrial sector: an analysis of six case studies. Intellectual Property Office, Newport

    Google Scholar 

  41. Staff S (2014) Revolutionary new electric car built and tested in one year with Objet1000 multi-material 3D production system. Stratasys. http://blog.stratasys.com/2014/11/18/streetscooter-3d-printing/. Accessed 14 Jan 2016

  42. Bunkley N (2014) “World’s first” 3D printed car created and driven by Local Motors. Automotive News. http://www.autonews.com/article/20141027/OEM06/310279987/auto-industry-uses-3-d-printing-heavily-in-product-development. Accessed 14 Jan 2016

  43. Wypych G (2012) Handbook of plasticizers, 2nd edn. William Andrew, Boston

    Google Scholar 

  44. Ljungberg N, Wesslén B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6(3):1789–1796

    Article  PubMed  CAS  Google Scholar 

  45. Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci B Polym Phys 49(15):1051–1083

    Article  CAS  Google Scholar 

  46. Ruellan A et al (2015) Plasticization of poly(lactide). In: Jiménez A, Peltzer M, Ruseckaite R (eds) Poly(lactic acid) science and technology: processing, properties, additives and applications. The Royal Society of Chemistry, London, pp. 124–170

    Google Scholar 

  47. Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39(7):1303–1310

    Article  CAS  Google Scholar 

  48. Murariu M et al (2008) Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym Adv Technol 19(6):636–646

    Article  CAS  Google Scholar 

  49. Zhang H et al (2013) Thermal, mechanical, and rheological properties of polylactide/poly(1,2-propylene glycol adipate). Polym Eng Sci 53(1):112–118

    Article  CAS  Google Scholar 

  50. Ren Z et al (2006) Dynamic mechanical and thermal properties of plasticized poly(lactic acid). J Appl Polym Sci 101(3):1583–1590

    Article  CAS  Google Scholar 

  51. Wojciechowska P (2012) The effect of concentration and type of plasticizer on the mechanical properties of cellulose acetate butyrate organic-inorganic hybrids. In: Luqman M (ed) Recent advances in plasticizers. Intech, Rijeka, pp. 141–164

    Google Scholar 

  52. Suvorova AI et al (1993) Chemical structure of plasticizers, compatibility of components and phase equilibrium in plasticized cellulose diacetate. Makromol Chem Rapid 194(5):1315–1321

    Article  CAS  Google Scholar 

  53. Notta-Cuvier D et al (2015) Tailoring polylactide properties for automotive applications: effects of co-addition of halloysite nanotubes and selected plasticizer. Macromol Mater Eng. doi:10.1002/mame.201500032

  54. Kfoury G et al (2013) Recent advances in high performance poly (lactide): from “green” plasticization to super-tough materials via (reactive) compounding. Front Chem 1:1

    Article  CAS  Google Scholar 

  55. Sangeetha VH et al (2016) State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym Compos. doi:10.1002/pc.23906

    Article  Google Scholar 

  56. Odent J et al (2015) Highly toughened polylactide-based materials through melt-blending techniques. In: Biodegradable polyesters. Wiley-VCH, Weinheim, pp. 235–274

    Google Scholar 

  57. Anderson KS et al (2008) Toughening polylactide. Polym Rev 48(1):85–108

    Article  CAS  Google Scholar 

  58. Hongzhi L, Jinwen Z (2012) Toughening Modification of Poly(lactic acid) via melt blending. In: Biobased monomers, polymers, and material. ACS Symposium Series, vol 1105, pp 27–46

    Google Scholar 

  59. Detyothin S et al (2010) Poly(lactic acid) blends. In: Poly(lactic acid). Wiley, Hoboken, pp. 227–271

    Chapter  Google Scholar 

  60. Perkins WG (1999) Polymer toughness and impact resistance. Polym Eng Sci 39(12):2445–2460

    Article  CAS  Google Scholar 

  61. Liu Z-W et al (2014) Mechanical and thermal properties of thermoplastic polyurethane-toughened polylactide-based nanocomposites. Polym Compos 35(9):1744–1757

    Article  CAS  Google Scholar 

  62. NatureWorks (2007) Technology focus report: toughened PLA. NatureWorks, Minnetonka

    Google Scholar 

  63. Taib RM et al (2012) Thermal, mechanical, and morphological properties of polylactic acid toughened with an impact modifier. J Appl Polym Sci 123(5):2715–2725

    Article  CAS  Google Scholar 

  64. Bouzouita A et al (2016) Design of highly tough poly(l-lactide)-based ternary blends for automotive applications. J Appl Polym Sci. doi:10.1002/app.43402

    Article  Google Scholar 

  65. Notta-Cuvier D et al (2014) Tailoring polylactide (PLA) properties for automotive applications: effect of addition of designed additives on main mechanical properties. Polym Test 36(0):1–9

    Article  CAS  Google Scholar 

  66. Zhang K et al (2014) Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl Mater Interface 6(15):12436–12448u

    Google Scholar 

  67. Zhang C et al (2013) Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater Des 45:198–205

    Article  CAS  Google Scholar 

  68. Pattamaprom C et al (2016) Improvement in impact resistance of polylactic acid by masticated and compatibilized natural rubber. Iran Polym J 25(2):169–178

    Article  CAS  Google Scholar 

  69. Pongtanayut K et al (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34:888–897

    Article  CAS  Google Scholar 

  70. Desa M et al (2015) Mechanical and thermal properties of rubber toughened poly(lactic acid). In: Advanced materials research, vol 1125. Trans Tech Publications, pp 222–226

    Google Scholar 

  71. Sun Y, He C (2013) Biodegradable “core–shell” rubber nanoparticles and their toughening of poly(lactides). Macromolecules 46(24):9625–9633

    Article  CAS  Google Scholar 

  72. Odent J et al (2013) Toughening of polylactide by tailoring phase-morphology with P[CL-co-LA] random copolyesters as biodegradable impact modifiers. Eur Polym J 49(4):914–922

    Article  CAS  Google Scholar 

  73. Meyva Y, Kaynak C (2015) Toughening of polylactide by bio-based and petroleum-based thermoplastic elastomers. Int Polym Process 30(5):593–602

    Article  CAS  Google Scholar 

  74. Li Y, Shimizu H (2007) Toughening of polylactide by melt blending with a biodegradable poly(ether) urethane elastomer. Macromol Biosci 7(7):921–928

    Article  PubMed  CAS  Google Scholar 

  75. Todo M, Takayama T (2014) Fracture mechanisms of biodegradable PLA and PLA/PCL blends. In: Pignatello R (ed) Biomaterials – physics and chemistry. InTech, Rijeka, pp 375–394

    Google Scholar 

  76. Todo M, Takayama T (2007) Toughening of bioabsorbable polymer blend by microstructural modification. In: Watanabe M, Okuno O, Sasaki K, Takahashi N, Suzuki O, Takada H (eds) Proceedings of the 2nd international symposium for Interface oral health science, Sendai, Japan, 18–19 February, 2007. Springer Japan, Tokyo, pp. 95–104

    Chapter  Google Scholar 

  77. Turng L-S, Srithep Y (2014) Annealing conditions for injection molded poly (lactic acid). Society of Plastics Engineers (SPE). doi:10.2417/spepro.005392. http://www.4spepro.org/pdf/005392/005392.pdf

  78. Grijpma DW et al (2002) Improvement of the mechanical properties of poly(D,L-lactide) by orientation. Polym Int 51(10):845–851

    Article  CAS  Google Scholar 

  79. Carrasco F et al (2010) Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95(2):116–125

    Article  CAS  Google Scholar 

  80. Nascimento L et al (2010) Effect of the recycling and annealing on the mechanical and fracture properties of poly(lactic acid). J Polym Environ 18(4):654–660

    Article  CAS  Google Scholar 

  81. Gámez-Pérez J et al (2011) Fracture behavior of quenched poly (lactic acid). Express Polym Lett 5(1):82–91

    Article  CAS  Google Scholar 

  82. Yang G et al (2012) Toughening of poly (L-lactic acid) by annealing: the effect of crystal morphologies and modifications. J Macromol Sci B 51(1):184–196

    Article  CAS  Google Scholar 

  83. Perego G et al (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59(1):37–43

    Article  CAS  Google Scholar 

  84. Cocca M et al (2011) Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). Eur Polym J 47(5):1073–1080

    Article  CAS  Google Scholar 

  85. Edenhofer B et al (2006) The flexible heat treatment of automotive components in a novel type of pusher furnace. La Metallurgia Italiana (2):39–45. http://www.fracturae.com/index.php/aim/article/download/633/602

  86. Funatani K (2004) Heat treatment of automotive components: current status and future trends. Trans Indian Inst Metals 57(4):381–396

    CAS  Google Scholar 

  87. Johnson RW et al (2004) The changing automotive environment: high-temperature electronics. IEEE Trans Electron Packag Manuf 27(3):164–176

    Article  Google Scholar 

  88. ASTM (2016) ASTM standard test method for deflection temperature of plastics under flexural load in the edgewise position. ASTM. http://www.astm.org/Standards/D648.htm

  89. Huda MS et al (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102(5):4856–4869

    Article  CAS  Google Scholar 

  90. Shih Y-F, Huang C-C (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res 18(6):2335–2340

    Article  CAS  Google Scholar 

  91. Lee B-H et al (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69(15–16):2573–2579

    Article  CAS  Google Scholar 

  92. Shi QF et al (2012) Influence of heat treatment on the heat distortion temperature of poly(lactic acid)/bamboo fiber/talc hybrid biocomposites. J Appl Polym Sci 123(5):2828–2836

    Article  CAS  Google Scholar 

  93. Ganster J, Fink H-P (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13(3):271–280

    Article  CAS  Google Scholar 

  94. Chanda M, Roy SK (2008) Industrial polymers, specialty polymers, and their applications, vol 74. CRC, Boca Raton

    Google Scholar 

  95. Coelho MC et al (2012) Nanotechnology in automotive industry: research strategy and trends for the future—small objects, big impacts. J Nanosci Nanotechnol 12(8):6621–6630

    Article  PubMed  CAS  Google Scholar 

  96. Mai Y-W, Yu Z-Z (2006) Polymer nanocomposites. Woodhead, Cambridge

    Book  Google Scholar 

  97. Huang J-W et al (2009) Polylactide/nano and microscale silica composite films. I. Preparation and characterization. J Appl Polym Sci 112(3):1688–1694

    Article  CAS  Google Scholar 

  98. Frone AN et al (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32(6):976–985

    Article  CAS  Google Scholar 

  99. Li ZQ et al (2010) Preparation and characterization of bacterial cellulose/polylactide nanocomposites. Polym-Plast Technol Eng 49(2):141–146

    Article  CAS  Google Scholar 

  100. Shameli K et al (2010) Silver/poly(lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomedicine 5:573–579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Xu X et al (2006) Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42(9):2081–2087

    Article  CAS  Google Scholar 

  102. González A et al (2012) Fire retardancy behavior of PLA based nanocomposites. Polym Degrad Stab 97(3):248–256

    Article  CAS  Google Scholar 

  103. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  CAS  Google Scholar 

  104. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63

    Article  Google Scholar 

  105. Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  CAS  Google Scholar 

  106. Kurauchi T et al (1991) Nylon 6-clay hybrid-synthesis, properties and application to automotive timing belt cover. SAE Technical Paper 910584. doi:10.4271/910584

  107. Paul M-A et al (2003) Exfoliated polylactide/clay nanocomposites by In-situ coordination–insertion polymerization. Macromol Rapid Commun 24(9):561–566

    Article  CAS  Google Scholar 

  108. Khankrua R et al (2013) Thermal and mechanical properties of biodegradable polyester/silica nanocomposites. Energy Procedia 34:705–713109

    Article  CAS  Google Scholar 

  109. Murariu M et al (2010) New trends in polylactide (PLA)-based materials: “green” PLA–calcium sulfate (nano)composites tailored with flame retardant properties. Polym Degrad Stab 95(3):374–381

    Article  CAS  Google Scholar 

  110. Sinha Ray S et al (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44(3):857–866

    Article  CAS  Google Scholar 

  111. Pilla S et al (2010) Microcellular processing of polylactide–hyperbranched polyester–nanoclay composites. J Mater Sci 45(10):2732–2746

    Article  CAS  Google Scholar 

  112. Ameli A et al (2014) Development of high void fraction polylactide composite foams using injection molding: mechanical and thermal insulation properties. Compos Sci Technol 90:88–95

    Article  CAS  Google Scholar 

  113. Pilla S et al (2007) Solid and microcellular polylactide-carbon nanotube nanocomposites. Int Polym Process 22(5):418–428

    Article  CAS  Google Scholar 

  114. Kramschuster A et al (2007) Injection molded solid and microcellular polylactide compounded with recycled paper shopping bag fibers. Int Polym Process 22(5):436–445

    Article  CAS  Google Scholar 

  115. Seo J-H et al (2012) Combined effects of chemical and microcellular foaming on foaming characteristics of PLA (poly lactic acid) in injection molding process. Polym-Plast Technol Eng 51(5):455–460

    Article  CAS  Google Scholar 

  116. Harris AM, Lee EC (2006) Injection molded polylactide (PLA) composites for automotive applications. SPE ACCE Paper Draft 62906

    Google Scholar 

  117. Najafi Chaloupli N (2015) Development of polylactide (PLA) and PLA nanocomposite foams in injection molding for automotive applications. Doctoral dissertation, École Polytechnique de Montréal

    Google Scholar 

  118. NatureWorks (2007) Technology focus report: blends of PLA with other thermoplastics. NatureWorks, Minnetonka

    Google Scholar 

  119. Guo X et al (2015) Poly(lactic acid)/polyoxymethylene blends: morphology, crystallization, rheology, and thermal mechanical properties. Polymer 69:103–109

    Article  CAS  Google Scholar 

  120. Hashima K et al (2010) Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer 51(17):3934–3939

    Article  CAS  Google Scholar 

  121. Wang Y et al (2012) Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: influence of compatibilizer type. J Appl Polym Sci 125(S2):E402–E412

    Article  CAS  Google Scholar 

  122. Lin L et al (2015) Improving the impact property and heat-resistance of PLA/PC blends through coupling molecular chains at the interface. Polym Adv Technol 26(10):1247–1258

    Article  CAS  Google Scholar 

  123. Lin L et al (2015) Super toughened and high heat-resistant poly(lactic acid) (PLA)-based blends by enhancing interfacial bonding and PLA phase crystallization. Ind Eng Chem Res 54(21):5643–5655

    Article  CAS  Google Scholar 

  124. Srithep Y et al (2014) Processing and characterization of poly(lactic acid) blended with polycarbonate and chain extender. J Polym Eng 34:665–672

    Google Scholar 

  125. Liu J (2014) Heat resistant, flame retardant polylactic acid compounds. Patent WO2014113453 A1

    Google Scholar 

  126. Eguiburu JL et al (1998) Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer 39(26):6891–6897

    Article  CAS  Google Scholar 

  127. Li S-H, Woo EM (2008) Immiscibility–miscibility phase transitions in blends of poly(L-lactide) with poly(methyl methacrylate). Polym Int 57(11):1242–1251

    Article  CAS  Google Scholar 

  128. Samuel C et al (2013) PLLA/PMMA blends: a shear-induced miscibility with tunable morphologies and properties? Polymer 54(15):3931–3939

    Article  CAS  Google Scholar 

  129. Zhang G et al (2003) Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci B Polym Phys 41(1):23–30

    Article  CAS  Google Scholar 

  130. Tsuji H (2007) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 7(12):1299–1299

    Article  CAS  Google Scholar 

  131. Ikada Y et al (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20(4):904–906

    Article  CAS  Google Scholar 

  132. Tsuji H et al (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 4. Differential scanning calorimetric studies on precipitates from mixed solutions of poly(D-lactic acid) and poly(L-lactic acid). Macromolecules 24(20):5657–5662

    Article  CAS  Google Scholar 

  133. Torres L et al (2016) Effect of multi-branched PDLA additives on the mechanical and thermomechanical properties of blends with PLLA. J Appl Polym Sci 133(1). doi:10.1002/app.42858

  134. Zou J et al (2012) Effects of poly (D-lactide acid) on the properties of crystallization and thermal behavior of poly (L-lactide acid). Adv Info Sci Service Sci 4(10):382

    Google Scholar 

  135. Oyama HT, Abe S (2015) Stereocomplex poly(lactic acid) alloys with superb heat resistance and toughness. ACS Sustain Chem Eng 3(12):3245–3252

    Article  CAS  Google Scholar 

  136. Sun B et al (2016) Enhanced toughness and strength of poly (d-lactide) by stereocomplexation with 5-arm poly (l-lactide). J Appl Polym Sci 133(1). doi:10.1002/app.42857

  137. Nam B-U, Lee B-S (2012) Toughening of PLA stereocomplex by impact modifiers. J Korea Acad Industr Coop Soc 13(2):919–925

    Article  Google Scholar 

  138. Corbion Purac (2015) high heat PLA: unlocking bioplastic potential for durable applications. http://www.corbion.com/media/77166/corbion-puracpla-high-heat-themesheet.pdf. Accessed Jan 2016

  139. Min BH (2003) A study on quality monitoring of injection-molded parts. J Mater Process Technol 136(1–3):1–6

    Article  Google Scholar 

  140. Spina R (2004) Injection moulding of automotive components: comparison between hot runner systems for a case study. J Mater Process Technol 155–156:1497–1504

    Article  Google Scholar 

  141. Lim LT et al (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852

    Article  CAS  Google Scholar 

  142. Mazumder SK (ed) (2002) Composites manufacturing, materials, product and process engineering. CRC Taylor & Francis, London. ISBN 0-8493-0585-3

    Google Scholar 

  143. Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255

    Article  CAS  Google Scholar 

  144. Li M et al (2010) Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci 50(12):2298–2305

    Article  CAS  Google Scholar 

  145. Urayama H et al (2003) Controlled crystal nucleation in the melt-crystallization of poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex. Polymer 44(19):5635–5641

    Article  CAS  Google Scholar 

  146. Petchwattana N et al (2014) Influence of talc particle size and content on crystallization behavior, mechanical properties and morphology of poly (lactic acid). Polym Bull 71(8):1947–1959

    Article  CAS  Google Scholar 

  147. Zhou J et al (2013) Synthesis and characterization of triblock copolymer PLA-b-PBT-b-PLA and its effect on the crystallization of PLA. RSC Adv 3(40):18464–18473

    Article  CAS  Google Scholar 

  148. Shi X et al (2015) Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly (lactic acid). Molecules 20(1):1579–1593

    Article  PubMed  CAS  Google Scholar 

  149. Kolstad JJ (1996) Crystallization kinetics of poly(L-lactide-co-meso-lactide). J Appl Polym Sci 62(7):1079–1091

    Article  CAS  Google Scholar 

  150. Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci B Polym Phys 39(3):300–313

    Article  CAS  Google Scholar 

  151. NEC (2006) NEC & UNITIKA Realize bioplastic reinforced with Kenaf fiber for mobile phone use. http://www.nec.co.jp/press/en/0603/2001.html

  152. Fujitsu Limited, Fujitsu Laboratories Ltd.,Toray Industries, Inc. (2005) Fujitsu and Toray develop world’s first environmentally-friendly large-size plastic housing for notebook PCs [Press release]. Retrieved from http://www.fujitsu.com/global/about/resources/news/press-releases/2005/0113-01.html

  153. Harris AM, Lee EC (2010) Heat and humidity performance of injection molded PLA for durable applications. J Appl Polym Sci 115(3):1380–1389

    Article  CAS  Google Scholar 

  154. Finniss A (2014) Polylactic acid-based polymer blends for durable applications. West Virginia University, Morgantown

    Google Scholar 

  155. Harris AM, Lee EC (2013) Durability of polylactide-based polymer blends for injection-molded applications. J Appl Polym Sci 128(3):2136–2144

    CAS  Google Scholar 

  156. Jiménez A et al (2014) Poly (lactic acid) science and technology: processing, properties, additives and applications, vol 12. Royal Society of Chemistry, London

    Book  Google Scholar 

  157. Toyota Motor Corporation (2000) Utilising plant-derived materials in automotive interior parts. http://www.toyota-boshoku.com/global/about/development/eco/index.html. Accessed 19 Feb 2016

  158. Toyota Motor Corporation (2008) Toyota to increase ‘ecological plastic’ in vehicle interiors. http://www.toyota.co.jp/en/news/08/1217.html. Accessed 21 Feb 2016

  159. Thielen M (2010) Hyundai Blue-Will concept to feature PLA and PA 11. Bioplastics Magazine, Jan/Feb 2010

    Google Scholar 

  160. Teijin Ltd. (2007) Highly heat-resistant bioplastic. http://www.teijin.com/rd/technology/bioplastic/. Accessed 22 Feb 2016

  161. Motors M (2006) Mitsubishi Motors develops plant-based green plastic floor mat. http://www.mitsubishi-motors.com/en/corporate/pressrelease/corporate/detail1475.html. Accessed 20 Feb 016

  162. Corbion Purac (2013) PLA bioplastics: a driving force in automotive. Corbion Purac. http://www.corbion.com/bioplastics/pla-markets/automotive. Accessed 05 Jan 2016

  163. Kitamura H (2007) Teijin Launches BIOFRONT heat-resistant bioplastic - 100% BIOFRONT car seat fabrics developed with Mazda

    Google Scholar 

  164. Ramaswamy S, Aslan B, Gries T, Urbanus M (2015) Biobased thermoplastic composites for automotive interiors. Bioplastics Magazine, Jan/Feb 2015

    Google Scholar 

  165. Aslan B et al (2012) Bio-composites: processing of thermoplastic biopolymers and industrial natural fibres from Staple fibre blends up to fabric for composite applications. J Textile Eng 19(85)

    Google Scholar 

  166. Ichhaporia PK (2008) Composites from natural fibers. Dissertation, North Carolina State University, Raleigh

    Google Scholar 

  167. Ampro Verdù Solis A (2015) New biobased fibres for automotive interior applications. Bioplastics Magazine, Sept/Oct 2015

    Google Scholar 

  168. Wambua P et al (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264

    Article  CAS  Google Scholar 

  169. Koronis G et al (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B 44(1):120–127

    Article  CAS  Google Scholar 

  170. Edana (2013) Nonwovens in automotive applications. Edana, Brussels. http://www.edana.org/discover-nonwovens/products-applications/automotive

Download references

Acknowledgements

LAMIH authors are grateful to CISIT, the Nord-Pas-de-Calais Region, the European Community, the Regional Delegation for Research and Technology, the Ministry of Higher Education and Research, and the National Center for Scientific Research for their financial support. UMONS and Materia Novaauthors are grateful to the “RegionWallonne” and the European Community (FEDER, FSE) in the frame of “Pole d’ExcellenceMateria Nova” INTERREG IV—NANOLAC project and in the excellence program OPTI2MAT for their financial support. CIRMAP thanks the “Belgian Federal Government Office Policy of Science (SSTC)” for general support in the frame of the PAI-7/05. J.O. thanks F.R.I.A. for its financial support thesis grant. J.-M. Raquez is a “Chercheur Qualifié” by the F.R.S.-FNRS (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amani Bouzouita or Jean-Marie Raquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bouzouita, A., Notta-Cuvier, D., Raquez, JM., Lauro, F., Dubois, P. (2017). Poly(lactic acid)-Based Materials for Automotive Applications. In: Di Lorenzo, M., Androsch, R. (eds) Industrial Applications of Poly(lactic acid). Advances in Polymer Science, vol 282. Springer, Cham. https://doi.org/10.1007/12_2017_10

Download citation

Publish with us

Policies and ethics