Skip to main content

Deoxydehydration of Polyols

  • Chapter
  • First Online:
Selective Catalysis for Renewable Feedstocks and Chemicals

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 353))

Abstract

The development of sustainable chemical processes for the conversion of highly oxygenated biomass feedstocks to chemical products requires efficient and selective processes for partial oxygen removal and refunctionalization. Here we review the development of the deoxydehydration (DODH) reaction, which converts vicinal diols (glycols) to olefins. Uncatalyzed deoxygenative eliminations were first established. The catalyzed DODH reactions have largely employed oxo-rhenium catalysts and a variety of reductants, including PR3, dihydrogen, sulfite, and alcohols. A variety of glycol and biomass-derived polyol substrates undergo the DODH reaction in moderate to good efficiency, regioselectively, and stereoselectively. Observations regarding selectivity, mechanistic probes, and computational studies support the general operation of a catalytic process involving three basic stages: glycol condensation to an M-glycolate, reduction of the oxo-metal, glycol condensation to produce a metal-glycolate, and alkene extrusion from the reduced metal-glycolate. Recent practical developments include the discovery of non-precious V- and Mo-oxo DODH catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APR:

Ammonium perrhenate

Bn:

Benzyl

Cp:

Cyclopentadienyl

DFT:

Density functional theory

DODH:

Deoxydehydration

e.u.:

entropy

MTO:

Methyltrioxorhenium

TPB:

tris-Pyrazolylborate

TsOH:

para-Toluenesulfonic acid

References

  1. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502

    Google Scholar 

  2. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098

    Google Scholar 

  3. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164–7183

    Article  CAS  Google Scholar 

  4. Aden A, Bozell J, Holladay J, White J, Manheim A (2004) Top value-added chemicals from biomass. In: Werpy T, Peterson G (eds) U.S. D.O.E. Report. See also the review by M. Mascal, M. Dusselier and B. Sels in this Topics in Current Chemistry volume

    Google Scholar 

  5. Agirrezabal-Telleria I, Gandarias I, Arias PL (in press) Catal Today. Submitted for publication dx.doi.org/10.1016/j.cattod.2013.11.027

    Google Scholar 

  6. Mascal M, Nikitin EB (2009) ChemSusChem 2:859–861

    Article  CAS  Google Scholar 

  7. Mascal M, Nikitin EB (2009) ChemSusChem 2:423–426

    Article  CAS  Google Scholar 

  8. Yang W, Sen A (2010) ChemSusChem 3:597–603

    Article  CAS  Google Scholar 

  9. Binder JB, Raines RT (2009) J Am Chem Soc 131:1979–1985. See also the review by M. Mascal in this Topics in Current Chemistry volume

    Google Scholar 

  10. Ruppert AM, Weinberg K, Palkovits R (2012) Angew Chem Int Ed 51:2564–2601

    Google Scholar 

  11. Deng W, Tan X, Fang W, Zhang Q, Wang Y (2009) Catal Lett 133:167

    Article  CAS  Google Scholar 

  12. Yan N, Zhao C, Luo C, Dyson PJ, Liu H, Kou Y (2006) J Am Chem Soc 128:8714–8715

    Article  CAS  Google Scholar 

  13. Schlaf M, Ghosh P, Fagan PJ, Hauptman E, Bullock RM (2009) Adv Synth Catal 351:789. See also the review by K. Tomishige et al. in this Topics in Current Chemistry volume

    Google Scholar 

  14. Metzger JO (2013) ChemCatChem 5:680–682

    Google Scholar 

  15. Crank G, Eastwood FW (1964) Aust J Chem 17:1392–1398

    Article  CAS  Google Scholar 

  16. Ando M, Ohhara H, Takase T (1986) J Chem Soc Jpn 879–882

    Google Scholar 

  17. Bergman R, Ellman J, Arceo E (2008) WO 2008/092,115

    Google Scholar 

  18. Bergman R, Ellman J, Arceo E, Marsden P (2009) US 2009/0,287,004

    Google Scholar 

  19. Arceo E, Marsden P, Bergman R, Ellman J (2009) Chem Commun 3357–3359

    Google Scholar 

  20. Cook GK, Andrews MA (1996) J Am Chem Soc 118:9448–9449

    Article  CAS  Google Scholar 

  21. Gable KP, Ross B (2006) ACS Symposium Series (Feedstocks for the Future) 921:143–155

    Google Scholar 

  22. Raju S, Jastrzebski JTBH, Lutz M, Klein Gebbink RJM (2013) ChemSusChem 1673–1680

    Google Scholar 

  23. Gable KP, Phan TN (1994) J Am Chem Soc 116:833–839

    Google Scholar 

  24. Gable KP, Juliette JJJ (1995) J Am Chem Soc 117:955–962

    Article  CAS  Google Scholar 

  25. Gable KP, Juliette JJJ (1996) J Am Chem Soc 118:2625–2633

    Article  CAS  Google Scholar 

  26. Gable KP, AbuBaker A, Zientara K, Wainwright AM (1999) Organometallics 18:173–179

    Google Scholar 

  27. Gable KP, Zhuravlev FA (2002) J Am Chem Soc 124:3970–3979

    Article  CAS  Google Scholar 

  28. Ziegler JE, Zdilla MJ, Evans AJ, Abu-Omar MM (2009) Inorg Chem 48:9998–10000

    Article  CAS  Google Scholar 

  29. Bi S, Wang J, Liu L, Li P, Lin Z (2012) Organometallics 31:6139–6147

    Article  CAS  Google Scholar 

  30. Vkuturi S, Chapman G, Ahmad I, Nicholas KM (2010) Inorg Chem 49:4744–4746

    Google Scholar 

  31. Shatnawi MY, Al-Ajlouni AM (2009) Jordan J Chem 4:119–130

    Google Scholar 

  32. Xu Z, Zhou M-D, Drees M, Chaffey-Millar H, Herdtweck E, Herrmann WA, Kuhn FE (2009) Inorg Chem 48:6812–6822

    Article  CAS  Google Scholar 

  33. Rietveld MHP, Nagelholt L, Grove DM, Veldman N, Spek AL, Rauch MU, Herrmann WA, van Koten G (1997) J Organometal Chem 530:159–167

    Article  CAS  Google Scholar 

  34. Ahmad I, Chapman G, Nicholas KM (2011) Organometallics 30:2810–2818

    Article  CAS  Google Scholar 

  35. Liu P, Nicholas KM (2013) Organometallics 1821–1831

    Google Scholar 

  36. Arceo E, Ellman JA, Bergman RG (2010) J Am Chem Soc 132:11408–11409

    Article  CAS  Google Scholar 

  37. Yi J, Liu S, Abu-Omar MM (2012) ChemSusChem 5:1401–1404

    Article  CAS  Google Scholar 

  38. Shiramizu M, Toste FD (2012) Angew Chem Int Ed 51:8082–8086

    Article  CAS  Google Scholar 

  39. Shiramizu M, Toste FD (2013) Angew Chem Int Ed 52:12905–12909

    Article  CAS  Google Scholar 

  40. Boucher-Jacobs C, Nicholas KM (2013) ChemSusChem 6:597–599

    Article  CAS  Google Scholar 

  41. Liu S, Senocak A, Smeltz JL, Yang L, Wegenhart B, Yi J, Kenttamaa HI, Ison EA, Abu-Omar MM (2013) Organometallics 32:3210–3219

    Article  CAS  Google Scholar 

  42. Qu S, Dang Y, Wen M, Wang Z (2013) Chem Eur J 19:3827–3832

    Article  CAS  Google Scholar 

  43. Denning L, Dang H, Liu Z, Nicholas KM, Jentoft FC (2013) ChemCatChem 5:3567–3570

    Article  CAS  Google Scholar 

  44. Emsley J (2001) Rhenium is one of the rarest elements in the Earth's crust with an average concentration of ca. 7 parts per billion by weight, making it the 77th most abundant element in Earth's crust. In: Nature's building blocks: an A-Z guide to the elements. Oxford University Press, Oxford, pp 358–360

    Google Scholar 

  45. Hills L, Moyano R, Montilla F, Pastor A, Galindo A, Alvarez E, Marchetti F, Pettinari C (2013) Eur J Inorg Chem 3352–3361

    Google Scholar 

  46. Dethlefsen JR, Lupp D, Oh B-C, Fristrup P (2014) ChemSusChem. doi:10.1002/cssc.201300945

    Google Scholar 

  47. Eagleson M, de Gruyter W (1994) Molybdenum’s abundance in the Earth’s crust is 1.2 parts per million by weight. Concise Encyclopedia Chem 662

    Google Scholar 

  48. Emsley J (2001) Vanadium’s abundance in the earth’s crust is 120 parts per million by weight. In: Nature's building blocks: an A–Z guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  49. Chapman G Jr, Nicholas KM (2013) ChemComm 49:8199–8201

    CAS  Google Scholar 

  50. Chapman G Jr, Nicholas KM (2014) Submitted for publication

    Google Scholar 

Download references

Acknowledgments

We are grateful for financial support of our research on catalytic deoxydehydration provided by the U.S. Department of Energy (Basic Energy Sciences) and by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Nicholas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boucher-Jacobs, C., Nicholas, K.M. (2014). Deoxydehydration of Polyols. In: Nicholas, K. (eds) Selective Catalysis for Renewable Feedstocks and Chemicals. Topics in Current Chemistry, vol 353. Springer, Cham. https://doi.org/10.1007/128_2014_537

Download citation

Publish with us

Policies and ethics