Skip to main content

Biomolecular Sensing with Colorimetric Vesicles

  • Chapter
  • First Online:
Creative Chemical Sensor Systems

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 277))

Abstract

This chapter summarizes recent studies employing colorimetric vesicle-based systems for biomolecular sensing. Vesicular aggregates exhibit an important advantage as a biological sensing platform in that they mimic the cell membrane—the site of molecular docking, ligand–receptor binding, and other important processes that can be exploited as a means of signal generation. Particularly attractive for sensing applications is the use of colour changes visible to the naked eye or detected spectroscopically as the signal transduction mechanism.

Vesicle assemblies comprising polydiacetylene (PDA)—a chromatic polymer that undergoes blue–red transformations in response to varied biological analytes and processes—are the primary focus of this chapter. We discuss the features of PDA that make it a promising constituent in biosensing platforms, in particular its self-assembly properties, the rigid framework allowing incorporation of varied lipid constituents, and the chromatic transformations induced by reactions with biological analytes. Recent studies depicting distinct vesicle assemblies are summarized. Vesicles comprising chemically modified PDA, in which receptor units are attached to the polymer-surface head groups, have been employed for detection of chemical and biological toxins, viruses, and bacteria. Mixed vesicles in which lipid bilayer domains are incorporated within the PDA matrix have also been extensively used as colorimetric biomimetic membrane platforms for studying diverse membrane processes and cell-surface phenomena. The PDA-embedded lipid bilayers further facilitate anchoring of varied molecular markers and recognition modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Linthicum DS, Patel J, Cairns N (2001) Antibody-based fluorescence polarization assay to screen combinatorial libraries for sweet taste compounds. Comb Chem High Throughput Screen 4:431–438

    PubMed  CAS  Google Scholar 

  2. Ito Y et al. (2002) Escherichia coli and its application in a mediated amperometric glucose sensor. Biosens Bioelectron 17:993–998

    Article  PubMed  CAS  Google Scholar 

  3. Sargent A, Sadik OA (1999) Monitoring antibody–antigen reactions at conducting polymer-based immunosensors using impedance spectroscopy. Electrochim Acta 44:4667–4675

    Article  CAS  Google Scholar 

  4. Eteshola E, Leckband D (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens Actuators B Chem 72:129–133

    Article  Google Scholar 

  5. Goddard NJ et al. (2002) Internally referenced resonant mirror devices for dispersion compensation in chemical sensing and biosensing applications. Sens Actuators A Phys 100:1–9

    Article  Google Scholar 

  6. Ward CJ, Patel P, James T (2002) Molecular color sensors for monosaccharides. Org Lett 4:477–479

    Article  PubMed  CAS  Google Scholar 

  7. Poenar DP, Frencha PJ, Wolffenbuttela RF (1997) Colour sensors based on active interference filters using silicon-compatible materials. Sens Actuators A Phys 62:513–523

    Article  Google Scholar 

  8. Bariain C et al. (2001) Behavioral experimental studies of a novel vapochromic material towards development of optical fiber organic compounds sensor. Sens Actuators B Chem 76:25–31

    Article  Google Scholar 

  9. Kyunghoa K et al. (1997) Active optical thin-film waveguide sensor for ion sensing. Anal Chim Acta 343:199–208

    Article  Google Scholar 

  10. Gambari R (2001) Biospecific interaction analysis: a tool for drug discovery and development. Am J Pharmacogenomics 1:119–135

    Article  PubMed  CAS  Google Scholar 

  11. Anglina R (1996) Colorimetric toxicity test. Biotechnol Adv 14:331

    Google Scholar 

  12. Poenar DP, Siu TM, Kiang TO (2002) Colour sensor for (bio)chemical/biological discrimination and detection. Mater Sci Semicond Process 5:17–22

    Article  CAS  Google Scholar 

  13. Lenarczuk T, Glab S, Koncki R (2001) Application of Prussian blue-based optical sensor in pharmaceutical analysis. J Pharm Biomed Anal 26:163–169

    Article  PubMed  CAS  Google Scholar 

  14. Hisamoto H et al. (1998) Two-color fluorescent lithium ion sensor. Anal Chim Acta 373:271–289

    Article  CAS  Google Scholar 

  15. Ignatov SG, Ferguson JA, Walt DR (2001) Highlight: recent trends in the application of evanescent wave biosensors. Biosens Bioelectron 16:109–113

    Article  PubMed  CAS  Google Scholar 

  16. Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2006) The use of luminescent quantum dots for optical sensing. Trends Anal Chem 25(3):207–218

    Article  CAS  Google Scholar 

  17. Sankaranarayanan S et al. (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79:2199–2208

    Article  PubMed  CAS  Google Scholar 

  18. Olson KD, Deval P, Spudich JL (1992) Absorption and photochemistry of sensory rhodopsin. I: pH effects. Photochem Photobiol 56:1181–1187

    Article  PubMed  CAS  Google Scholar 

  19. Cheng Z, Aspinwall CA (2006) Nanometre-sized molecular oxygen sensors prepared from polymer-stabilized phospholipid vesicles. Analyst 131(2):236–243

    Article  PubMed  CAS  Google Scholar 

  20. Lee KS et al. (1999) Disposable liposome immunosensor for theophylline combining an immunochromatographic membrane and a thick-film electrode. Anal Chim Acta 380:17–26

    Article  CAS  Google Scholar 

  21. Carbonell RG et al. (1997) Immunodiagnostic assay using liposomes carrying labels thereof on outer liposome surface. Biotechnol Adv 15:181

    Google Scholar 

  22. Hianik T et al. (1999) Immunosensors based on supported lipid membranes, protein films and liposomes modified by antibodies. Sens Actuators B Chem 57:201–212

    Article  Google Scholar 

  23. Cooper MA et al. (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal Biochem 277:196–205

    Article  PubMed  CAS  Google Scholar 

  24. Yang Y et al. (2000) A glucose sensor with improved haemocompatibilty. Biosens Bioelectron 15:221–227

    Article  PubMed  CAS  Google Scholar 

  25. Woodbury CPJ, Venton DL (1999) Methods of screening combinatorial libraries using immobilized or restrained receptors. J Chromatogr B Biomed Sci Appl 725:113–137

    Article  PubMed  CAS  Google Scholar 

  26. Toko K (2000) Taste sensor. Sens Actuators B Chem 64:205–215

    Article  Google Scholar 

  27. Leatherbarrow RJ, Edwards PR (1999) Analysis of molecular recognition using optical biosensors. Curr Opin Chem Biol 3:544–547

    Article  PubMed  CAS  Google Scholar 

  28. Li SK, D'Emanuele A (2001) On-off transport through a thermoresponsive hydrogel composite membrane. J Control Release 75:55–67

    Article  PubMed  CAS  Google Scholar 

  29. Gonzalez-Manas JM, Kaschny P, Goni FM (1994) Use of merocyanine 540 as an optical probe in the study of membrane–surfactant interactions. J Phys Chem 98(41):10650–10654

    Article  CAS  Google Scholar 

  30. Roberts MA, Durst RA (1995) Investigation of liposome-based immunomigration sensors for the detection of polychlorinated biphenyls. Anal Chem 67(3):482–491

    Article  PubMed  CAS  Google Scholar 

  31. Reeves SG, Durst RA (1995) Novel optical measurements approach for the quantitation of liposome immunomigration assays. Anal Lett 28(13):2347–2362

    CAS  Google Scholar 

  32. Okada S et al. (1998) Color and chromism of polydiacetylene vesicles. Acc Chem Res 31:229–239

    Article  CAS  Google Scholar 

  33. Tanaka H et al. (1989) Thermochromic phase transitions of a polydiacetylene, poly(ETCD), studied by high-resolution solid-state C13 NMR. Macromolecules 22:1208–1215

    Article  CAS  Google Scholar 

  34. Okada S, Charych DH (1997) Thermochromic transitions of synthetic lipid–polymer membranes. Berkeley Sci J 1:48–50

    CAS  Google Scholar 

  35. Lio A et al. (1997) Molecular imaging of thermochromic carbohydrate-modified polydiacetylene thin films. Langmuir 13:6524–6532

    Article  CAS  Google Scholar 

  36. Lio A et al. (1996) Atomic force microscope study of chromatic transitions in polydiacetylene films. J Vac Sci Technol 14:1481–1484

    Article  CAS  Google Scholar 

  37. Wenzel M, Atkinson GH (1989) Chromatic properties of polydiacetylene films. J Am Chem Soc 111:4123–4127

    Article  Google Scholar 

  38. Berman A, Charych DH (1999) Oriented nucleation of inorganic salts on polymeric long chain acid monolayers. J Cryst Growth 198/199:796–801

    Article  CAS  Google Scholar 

  39. Ringsdorf H, Schlarb B, Venzmer J (1988) Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembranes. Angew Chem Int Ed Engl 27:113–158

    Article  Google Scholar 

  40. Jonas U et al. (1999) Reversible color switching and unusual solution polymerization of hydrazide-modified diacetylene lipids. J Am Chem Soc 121:4580–4588

    Article  CAS  Google Scholar 

  41. Ahn DJ et al. (2003) Colorimetric reversibility of polydiacetylene supramolecules having enhanced hydrogen-bonding under thermal and pH stimuli. J Am Chem Soc 125(30):8976–8977

    Article  PubMed  CAS  Google Scholar 

  42. Kolusheva S, Shahal T, Jelinek R (2000) Peptide–membrane interactions studied by a new phospholipid/polydiacetylene colorimetric vesicle assay. Biochemistry 39:15851–15859

    Article  PubMed  CAS  Google Scholar 

  43. Jelinek R, Kolusheva S (2001) Polymerized lipid vesicles as colorimetric biosensors for biotechnological applications. Biotechnol Adv 19:109–118

    Article  PubMed  CAS  Google Scholar 

  44. Jelinek R et al. (1998) Interfacial catalysis by phospholipases at conjugated lipid vesicles: colorimetric detection and NMR spectroscopy. Chem Biol 5:619–629

    Article  PubMed  CAS  Google Scholar 

  45. Okada SY, Jelinek R, Charych DH (1999) Induced color change of conjugated polymeric vesicles by interfacial catalysis of phospholipase A2. Angew Chem Int Ed 38:655–659

    Article  CAS  Google Scholar 

  46. Wilson TE et al. (1994) Enzymic modification and X-ray photoelectron spectroscopy analysis of a functionalized polydiacetylene thin film. Langmuir 10:1512–1516

    Article  CAS  Google Scholar 

  47. Charych D, Nagy JO (1996) Artificial cell membranes for diagnostics and therapeutics. Chemtech 26:24–28

    CAS  Google Scholar 

  48. Kolusheva S, Wachtel E, Jelinek R (2003) Biomimetic lipid/polymer colorimetric membranes: molecular and cooperative properties. J Lipid Res 44:65–71

    Article  PubMed  CAS  Google Scholar 

  49. Song J, Cisar JS, Bertozzi CR (2004) Functional self-assembling bolaamphiphilic polydiacetylenes as colorimetric sensor scaffolds. J Am Chem Soc 126(27):8459–8465

    Article  PubMed  CAS  Google Scholar 

  50. Sarkar A et al. (2005) Colorimetric biosensors based on polydiacetylene (PDA) and polyamidoamine (PAMAM) dendrimers. Polymer News 30(12):370–377

    CAS  Google Scholar 

  51. Peng H et al. (2005) Polydiacetylene/silica nanocomposites with tunable mesostructure and thermochromatism from diacetylenic assembling molecules. J Am Chem Soc 127(37):12782–12783

    Article  PubMed  CAS  Google Scholar 

  52. Charych DH et al. (1993) Specific interactions of influenza virus with organized assemblies of polydiacetylenes. Biomol Mater 292:153–161

    CAS  Google Scholar 

  53. Spevak W, Nagy JO, Charych D (1995) Molecular assemblies of functionalized polydiaceylenes. Adv Mater 7(1):85–89

    Article  CAS  Google Scholar 

  54. Reichert A et al. (1995) Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus. J Am Chem Soc 117:829–830

    Article  CAS  Google Scholar 

  55. Pan JJ, Charych DH (1997) Molecular recognition and colorimetric detection of cholera toxin by polymerized liposomes. Langmuir 13:1365–1367

    Article  CAS  Google Scholar 

  56. Litvin AL et al. (1995) Langmuir films of amino acid-modified diacetylenes as organic templates for biomimetic mineralization. Proc Soc Photo Opt Instrum Eng 2441:54–60

    ADS  CAS  Google Scholar 

  57. Litvin AL et al. (1995) Liquid crystalline texture in glycine-modified diacetylene Langmuir monolayers at room temperature. J Phys Chem 99:492–495

    Article  CAS  Google Scholar 

  58. Jung YK, Park HG, Kim JM (2006) Polydiacetylene (PDA)-based colorimetric detection of biotin–streptavidin interactions. Biosens Bioelectron 21(8):1536–1544

    Article  PubMed  CAS  Google Scholar 

  59. Cheng Q, Stevens RC (1997) Coupling of an induced fit enzyme to polydiacetylene thin films: colorimetric detection of glucose. Adv Mater 9:481

    Article  CAS  Google Scholar 

  60. Yamanaka SA et al. (1997) Solid-phase immobilization of optically responsive liposomes in sol–gel materials for chemical and biological sensing. Langmuir 13:5049–5053

    Article  CAS  Google Scholar 

  61. Charych DH et al. (1994) Direct colorimetric detection of virus by a polymerized bilayer assembly. Biomol Mater Design 330:295–308

    CAS  Google Scholar 

  62. Wang C, Ma Z (2005) Colorimetric detection of oligonucleotides using a polydiacetylene vesicle sensor. Anal Bioanal Chem 382(7):1708–1710

    Article  PubMed  CAS  Google Scholar 

  63. Wang C, Ma Z, Su Z (2006) Facile method to detect oligonucleotides with functionalized polydiacetylene vesicles. Sens Actuators B Chem B113(1):510–515

    Article  ADS  CAS  Google Scholar 

  64. Rangin M, Basu A (2004) Lipopolysaccharide identification with functionalized polydiacetylene liposome sensors. J Am Chem Soc 126(16):5038–5039

    Article  PubMed  CAS  Google Scholar 

  65. Kim JM et al. (2003) Immobilized polydiacetylene vesicles on solid substrates for use as chemosensors. Adv Mater 15(13):1118–1121

    Article  CAS  Google Scholar 

  66. Su YI (2005) Assembly of polydiacetylene vesicles on solid substrates. J Colloid Interface Sci 292(1):271–276

    Article  PubMed  CAS  Google Scholar 

  67. Baek M-G, Stevens RC, Charych DH (2000) Design and synthesis of novel glycopolythiophene assemblies for colorimetric detection of influenza virus and E. coli. Bioconjug Chem 11:777–788

    Article  PubMed  CAS  Google Scholar 

  68. Spevak W et al. (1993) Polymerized liposomes containing C-glycosides of sialic acid: potent inhibitors of influenza virus in vitro infectivity. J Am Chem Soc 115:1146–1147

    Article  CAS  Google Scholar 

  69. Pan JJ, Charych DH (1997) Molecular recognition and optical detection of biological pathogens at biomimetic membrane interfaces. Proc Soc Photo Opt Instrum Eng 3040:211–217

    ADS  CAS  Google Scholar 

  70. Song J et al. (2002) Smart materials for biosensing devices: cell-mimicking supramolecular assemblies and colorimetric detection of pathogenic agents. Biomed Microdevices 4(3):213–221

    Article  CAS  Google Scholar 

  71. Ma G, Cheng Q (2005) Vesicular polydiacetylene sensor for colorimetric signaling of bacterial pore-forming toxin. Langmuir 21(14):6123–6126

    Article  PubMed  CAS  Google Scholar 

  72. Ma G, Cheng Q (2006) Manipulating FRET with polymeric vesicles: development of a mix-and-detect type fluorescence sensor for bacterial toxin. Langmuir 22(16):6743–6745

    Article  PubMed  CAS  Google Scholar 

  73. Kolusheva S, Boyer L, Jelinek R (2000) A colorimetric assay for rapid screening of antimicrobial peptides. Nat Biotechnol 18:225–227

    Article  PubMed  CAS  Google Scholar 

  74. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  PubMed  CAS  Google Scholar 

  75. Charych DH, Spevak W, Nagy JO, Bednarski MD (1993) Mater Res Soc Symp Proc 292:153–161

    CAS  Google Scholar 

  76. Rozner S, Kolusheva S, Cohen Z, Dowhan W, Eichler J, Jelinek R (2003) Detection and analysis of membrane interactions by a biomimetic colorimetric lipid/polydiacetylene assay. Anal Biochem 319(1):96–104

    Article  PubMed  CAS  Google Scholar 

  77. Katz M, Tsubery H, Kolusheva S, Shames A, Fridkin M, Jelinek R (2003) Lipid binding and membrane penetration of polymyxin B derivatives studied in a biomimetic vesicle system. Biochem J 375(2):405–413

    Article  PubMed  CAS  Google Scholar 

  78. Halevy R et al. (2003) Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Peptides 24:1753–1761

    Article  PubMed  CAS  Google Scholar 

  79. Satchell DP et al. (2003) Quantitative interactions between cryptdin-4 amino terminal variants and membranes. Peptides 24:1795–1805

    Article  PubMed  CAS  Google Scholar 

  80. Tanabe H et al. (2004) Structure-activity determinants in paneth cell ±-defensins: loss-of-function in mouse cryptdin-4 by charge-reversal at arginine residue positions. J Biol Chem 279:11976–11983

    Article  PubMed  CAS  Google Scholar 

  81. Sheynis T et al. (2003) Bilayer localization of membrane-active peptides studied in bio-mimetic vesicles by visible and fluorescence spectroscopies. Eur J Biochem 270:4478–4487

    Article  PubMed  CAS  Google Scholar 

  82. Porat Y et al. (2003) The human islet amyloid polypeptide forms transient membrane-active protofilaments. Biochemistry 42:10971–10977

    Article  PubMed  CAS  Google Scholar 

  83. Su Y, Sinko PJ (2006) Drug delivery across the blood–brain barrier: why is it difficult? How to measure and improve it? Expert Opin Drug Deliv 3(3):419–435

    Article  PubMed  CAS  Google Scholar 

  84. Liu X, C Chen (2005) Strategies to optimize brain penetration in drug discovery. Curr Opin Drug Discov Devel 8(4):505–512

    PubMed  CAS  Google Scholar 

  85. Cucullo L et al. (2005) Drug delivery and in vitro models of the blood–brain barrier. Curr Opin Drug Discov Devel 8(1):89–99

    PubMed  CAS  Google Scholar 

  86. Katz M et al. (2006) Rapid colorimetric screening of drug interaction and penetration through lipid barriers. Pharm Res 23(3):580–587

    Article  PubMed  CAS  Google Scholar 

  87. Silbert L et al. (2006) Rapid chromatic detection of bacteria using a new biomimetic polymer sensor. Appl Environ Microbiol 72(11):7339–7344

    Article  PubMed  CAS  Google Scholar 

  88. Rangin M, Basu A (2004) Lipopolysaccharide Identification with functionalized polydiacetylene liposome sensors. J Am Chem Soc 126:5038–5039

    Article  PubMed  CAS  Google Scholar 

  89. Ma Z, Li J, Jiang L (2000) Influence of the spacer length of glycolipid receptors in polydiacetylene vesicles on the colorimetric detection of Escherichia coli. Langmuir 16:7801–7804

    Article  CAS  Google Scholar 

  90. Ma Z et al. (1998) Colorimetric detection of Escherichia coli by polydiacetylene vesicles functionalized with glycolipid. J Am Chem Soc 120:12678–12679

    Article  CAS  Google Scholar 

  91. Gophna U et al. (2002) Role of fibronectin in curli-mediated internalization. FEMS Microbiol Lett 212:55–58

    Article  PubMed  CAS  Google Scholar 

  92. Gophna UB et al. (2001) Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69:2659–2665

    Article  PubMed  CAS  Google Scholar 

  93. Gill I, Ballesteros A (2003) Immunoglobulin–polydiacetylene sol–gel nanocomposites as solid-state chromatic biosensors. Angew Chem Int Ed 42(28):3264–3267

    Article  CAS  Google Scholar 

  94. Kolusheva S, Shahal T, Jelinek R (2000) Cation-selective color sensors composed of ionophore-phospholipid-polydiacetylene mixed vesicles. J Am Chem Soc 122(5):776–780

    Article  CAS  Google Scholar 

  95. Pressman BC (1976) Annu Rev Biochem 45:501

    Article  PubMed  CAS  Google Scholar 

  96. Reed PW (1979) Methods Enzymol 55:435

    Article  PubMed  CAS  Google Scholar 

  97. Kolusheva S et al. (2001) Rapid colorimetric detection of antibody-epitope recognition at a bio-mimetic membrane interface. J Am Chem Soc 123:417–422

    Article  PubMed  CAS  Google Scholar 

  98. Killian JA et al. (1996) Biochemistry 35:1037–1045

    Article  PubMed  CAS  Google Scholar 

  99. Zhang YP et al. (1995) Biochemistry 34:2362–2371

    Article  PubMed  CAS  Google Scholar 

  100. Gerondakis S, Bishop JM (1986) Mol Cell Biol 6:3677–3684

    PubMed  CAS  Google Scholar 

  101. Chiang CM, Roeder RG (1993) Pept Res 6:62–64

    PubMed  CAS  Google Scholar 

  102. Wilson IA et al. (1984) Cell 37:767–778

    Article  PubMed  CAS  Google Scholar 

  103. Kolusheva S et al. (2005) Selective detection of catecholamines by synthetic receptors embedded in chromatic polydiacetylene vesicles. J Am Chem Soc 127:10000–10001

    Article  PubMed  CAS  Google Scholar 

  104. Molt O, Rübeling D, Schrader T (2003) J Am Chem Soc 15:12086–12087

    Article  CAS  Google Scholar 

  105. Schrader T, Zadmard R (2004) J Am Chem Soc 126:7752–7753

    Article  PubMed  CAS  Google Scholar 

  106. Kolusheva S et al. (2006) Color fingerprinting of proteins by calixarenes embedded in lipid/polydiacetylene vesicles. J Am Chem Soc 128(41):13592–13598

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raz Jelinek .

Editor information

Thomas Schrader

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jelinek, R., Kolusheva, S. (2007). Biomolecular Sensing with Colorimetric Vesicles. In: Schrader, T. (eds) Creative Chemical Sensor Systems. Topics in Current Chemistry, vol 277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2007_112

Download citation

Publish with us

Policies and ethics