Skip to main content

Slime Mould and the Transition to Multicellularity: The Role of the Macrocyst Stage

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

The transition from unicellular to multicellular organisms is one of the mysteries of evolutionary biology. Individual cells must give up their rights to reproduction and reproduce instead as part of a whole. I review and model the macrocyst stage in slime mould (Dictyostelium) evolution to investigate why an organism might have something to gain from joining a collective reproduction strategy. The macrocyst is a reproductive cartel where individual cells aggregate and form a large zygotic cell which then eats the other aggregating cells. The offspring all have the same genetic code. The model is a steady state genetic algorithm at an individual cellular level. An individual’s genetic code determines a threshold above which it will reproduce and a threshold below which it will join a macrocyst. I find that cycles in food availability can play an important role in an organism’s likelihood of joining the macrocyst. The results also demonstrate how the macrocyst may be an important precursor to other cooperative behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armstrong, D.P.: Why don’t cellular slime molds cheat. Journal of Theoretical Biology 109, 271–283 (1984)

    Article  Google Scholar 

  2. Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., Doolittle, W.F.: A kingdom level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000)

    Article  Google Scholar 

  3. Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S., Adami, C., Green, D.G., Ikegami, T., Kaneko, K., Ray, T.S.: Open problems in artificial life. Artificial Life 6, 363–376 (2000)

    Article  Google Scholar 

  4. Bonner, J.T.: The origins of multicellularity. Integrative Biology 1, 27–36 (1999)

    Google Scholar 

  5. Bozzone, D.M., Bonner, J.T.: Macrocyst formation in Dictyostelium discoideum: Mating or selfing? The Journal of Experimental Zoology 220, 391–394 (1982)

    Article  Google Scholar 

  6. Buss, L.W.: Somatic cell parasitism and the evolution of somatic tissue compatibility. Evolution 79, 5337–5341 (1982)

    Google Scholar 

  7. Buss, L.W.: The evolution of individuality. Princeton University Press, Princeton (1987)

    Google Scholar 

  8. Chae, S.C., Inazu, Y., Amagai, A., Maeda, Y.: Underexpression of a novel gene, dia2, impairs the transition of Dictyostelium cells from growth to differentiation. Biochemical and Biophysical Research Communications 252, 278–283 (1998)

    Article  Google Scholar 

  9. Di Paolo, E.: A little more than kind and less than kin: the unwarranted use of kin selection in spatial models of communication. In: Floreano, D., Nicoud, J.-D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 504–513. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Frank, S.A.: Foundations of Social Evolution. Princeton University Press, Princeton (1998)

    Google Scholar 

  11. Hirose, S., Inazu, Y., Chae, S., Maeda, Y.: Suppression of the growth/differentiation transition in Dictyostelium development by transient expression of a novel gene, dia1. Development 127, 3263–3270 (2000)

    Google Scholar 

  12. Kerszberg, M., Wolpert, L.: The origin of metazoa and the egg: a role for cell death. Journal of Theoretical Biology 193, 535–537 (1998)

    Article  Google Scholar 

  13. Kessin, R.H.: Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  14. Marée, A.F.M., Panfilov, A.V., Hogeweg, P.: Migration and thermotaxis of dictyostelium discoideum slugs, a model study. Journal of Theoretical Biology 199, 297–309 (1999)

    Article  Google Scholar 

  15. Marshall, J.A.R., Rowe, J.E.: Viscous populations and their support for reciprocal cooperation. Artificial Life 9, 327–334 (2003)

    Article  Google Scholar 

  16. Maynard Smith, J., Szathmáry, E.: The Major Transitions in Evolution. Oxford University Press, Oxford (1995)

    Google Scholar 

  17. Michod, R.E.: Cooperation and conflict in the evolution of individuality. ii. conflict mediation. Proceedings of the Royal Society of London: Series B: Biological Sciences 263, 813–822 (1996)

    Article  Google Scholar 

  18. Okada, H., Hirota, Y., Moriyama, R., Saga, Y., Yanagisawa, K.: Nuclear fusion in multinucleated giant cells during the sexual development of Dictyostelium discoideum. Developmental Biology 118, 95–102 (1986)

    Article  Google Scholar 

  19. Pfeiffer, T., Bonhoeffer, S.: An evolutionary scenario for the transition to undifferentiated multicellularity. Proceedings of the National Academy of Sciences of the United States of America 100, 1095–1098 (2003)

    Article  Google Scholar 

  20. Queller, D.C.: Relatedness and the fraternal major transitions. Philosophical Transactions of the Royal Society of London. Series B. 355, 1647–1655 (2000)

    Article  Google Scholar 

  21. Queller, D.C.: Genetic relatedness in viscous populations. Evolutionary Ecology 8, 70–73 (1994)

    Article  Google Scholar 

  22. Raper, K.B.: The Dictyostelids. Princeton University Press, Princeton (1984)

    Google Scholar 

  23. Stewart, J.: Evolutionary transitions and artificial life. Artificial Life 3, 101–120 (1997)

    Article  Google Scholar 

  24. Travisano, M., Velicer, G.J.: Strategies of microbial cheater control. Trends in Microbiology 12, 72–78 (2004)

    Article  Google Scholar 

  25. Wallace, M.A., Raper, K.B.: Genetic exchanges in the macrocysts of Dictyostelium discoideum. Journal of General Microbiology 113, 327–337 (1979)

    Google Scholar 

  26. West, S.A., Pen, I., Griffin, A.S.: Cooperation and competition between relatives. Science 296, 72–75 (2002)

    Article  Google Scholar 

  27. Wolpert, L.: The evolution of development. Biological Journal of the Linnean Society 39, 109–124 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bryden, J. (2005). Slime Mould and the Transition to Multicellularity: The Role of the Macrocyst Stage. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_56

Download citation

  • DOI: https://doi.org/10.1007/11553090_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics