Skip to main content

Multicellular Life Cycles as an Emergent Property in Filamentous Bacteria

  • Chapter
  • First Online:
Evolutionary Transitions to Multicellular Life

Part of the book series: Advances in Marine Genomics ((AMGE,volume 2))

  • 1677 Accesses

Abstract

Multicellularity is an integral part of all organisms that grow to be larger than microscopic scales and is a necessity for complex morphologies. Hence, a central question is: what are the conditions that can lead to the evolution of multicellular development? Here, we outline a theoretical framework that serves as basis to understand the interactions that can lead to the evolution of multicellular life cycles in simple filamentous organisms. By assuming the prior evolution and existence of filamentous multicellularity, and not considering a priori selective advantages, we explore the extent to which intrinsic processes such as cellular birth and death rates can drive the development of such multicellular organisms. The chapter offers an overview of our mathematical setup and of the validation experiments in natural populations of filamentous bacteria. These studies show the presence of a common pattern in terms of filament growth, which provides a hypothesis for the emergence of primitive multicellular life cycles in simple organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamec F, Kaftan D, Nedbal L (2005) Stress-induced filament fragmentation of Calothrix elenkinii (Cyanobacteria) is facilitated by death of high-fluorescence cells. J Phycol 41(4):835–839

    Article  Google Scholar 

  • Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9(11):868–882

    Article  CAS  Google Scholar 

  • Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211(4489):1390–1396

    Article  CAS  Google Scholar 

  • Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33(5):942–957

    Article  CAS  Google Scholar 

  • Berman-Frank I, Bidle KD, Haramaty L, Falkowski PG (2004) The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol Oceanogr 49(4):997–1005

    Article  Google Scholar 

  • Boomsma JJ, Franks NR (2006) Social insects: from selfish genes to self organisation and beyond. Trends Ecol Evol 21(6):303–308

    Article  Google Scholar 

  • Bonner JT (1974) On development: the biology of form. Harvard University Press, Cambridge

    Google Scholar 

  • Boraas ME, Seale DB, Boxhorn JE (1998) Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity. Evol Ecol 12(2):153–164. doi:10.1023/a:1006527528063

    Article  Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Claessen D, Rozen DE, Kuipers OP, Sogaard-Andersen L, van Wezel GP (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12(2):115–124. doi:10.1038/nrmicro3178

    Article  CAS  Google Scholar 

  • Daft MJ, Stewart WDP (1973) Light and electron-microscope observations on algal lysis by bacterium CP-1. New Phytol 72(4):799–808

    Article  Google Scholar 

  • Dworkin M (1972) The myxobacteria: new directions in studies of procaryotic development. Crit Rev Microbiol 1(4):435–452

    Article  Google Scholar 

  • Hahn MW, Hoefle MG (1998) Grazing pressure by a bacterivorous flagellate reverses the relative abundance of comamonas acidovorans PX54 and Vibrio Strain CB5 in Chemostat Cocultures. Appl Environ Microbiol 64(5):1910–1918

    CAS  Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:143

    Google Scholar 

  • Ispolatov I, Ackermann M, Doebeli M (2012) Division of labour and the evolution of multicellularity. Proc R Soc Lond B Biol Sci 279(1734):1768–1776. doi:10.1098/rspb.2011.1999

    Article  Google Scholar 

  • Kamp A, Roy H, Schulz-Vogt HN (2008) Video supported analysis of Beggiatoa filament growth, breakage, and movement. Microb Ecol 56(3):484–491

    Article  Google Scholar 

  • Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54:413–437. doi:10.1146/annurev.micro.54.1.413

    Article  CAS  Google Scholar 

  • Komarek J, Anagnostidis K (2005) Susswasserflora von Mitteleuropa 19/2. Cyanoprokaryota, 2. Teil: Oscillatriales. Spektrum, Heidelberg

    Google Scholar 

  • Kruskopf M (2006) Growth and filament length of the bloom forming Oscillatoria simplicissima (Oscillatoriales, Cyanophyta) in varying N and P concentrations. Hydrobiologia 556(1):357–362

    Article  CAS  Google Scholar 

  • Lewis K (2000) Programmed death in bacteria. Microbiol Mol Biol Rev 64(3):503–514

    Article  CAS  Google Scholar 

  • Michod RE, Roze D (2001) Cooperation and conflict in the evolution of multicellularity. Heredity 86(Part 1):1–7

    Article  CAS  Google Scholar 

  • Nedelcu AM, Michod RE (2006) The evolutionary origin of an altruistic gene. Mol Biol Evol 23(8):1460–1464. doi:10.1093/molbev/msl016

    Article  CAS  Google Scholar 

  • Ning SB, Guo HL, Wang L, Song YC (2002) Salt stress induces programmed cell death in prokaryotic organism Anabaena. J Appl Microbiol 93(1):15–28

    Article  CAS  Google Scholar 

  • Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2(1):11–26

    Article  CAS  Google Scholar 

  • Ratcliff WC, Pentz JT, Travisano M (2013) Tempo and mode of multicellular adaptation in experimentally evolved Saccharomyces cerevisiae. Evolution 67(6):1573–1581. doi:10.1111/evo.12101

    Article  Google Scholar 

  • Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Ann Rev Genet 42(1):235–251

    Article  CAS  Google Scholar 

  • Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ (2007) Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4(12):1949–1958

    Article  Google Scholar 

  • Rossetti V, Ammann TW, Thurnheer T, Bagheri HC, Belibasakis GN (2013) Phenotypic diversity of multicellular filamentation in oral streptococci. Plos One 8(9). doi:10.1371/journal.pone.0076221

    Google Scholar 

  • Rossetti V, Filippini M, Svercel M, Barbour AD, Bagheri HC (2011) Emergent multicellular life cycles in filamentous bacteria owing to density-dependent population dynamics. J R Soc Interface 8(65):1772–1784. doi:10.1098/rsif.2011.0102

    Article  Google Scholar 

  • Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. The Quart Rev Biol 79(2):135–160

    Article  Google Scholar 

  • Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in Cyanobacteria. BMC Evol Biol 11(1):45

    Google Scholar 

  • Schirrmeister BE, Dalquen DA, Anisimova M, Bagheri HC (2012) Gene copy number variation and its significance in cyanobacterial phylogeny. BMC Microbiol 12. doi:10.1186/1471-2180-12-177

    Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci 361(1470):869–885

    Article  CAS  Google Scholar 

  • Solari CA, Kessler JO, Michod RE (2006) A hydrodynamics approach to the evolution of multicellularity: flagellar motility and germ-soma differentiation in Volvocalean Green Algae. Am Nat 167(4):537–554

    Article  Google Scholar 

  • Strassmann JE, Zhu Y, Queller DC (2000) Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408(6815):965–967

    Article  CAS  Google Scholar 

  • Tannock GW (1999) Analysis of the intestinal microflora: a renaissance. Anton Leeuw Int J G Mol Microbiol 76(1–4):265–278

    Article  CAS  Google Scholar 

  • van Hannen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65(2):795–801

    Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28(2):127–181

    Article  CAS  Google Scholar 

  • Whitton BA, Potts M (eds) (2000) The ecology of cyanobacteria. Their diversity in time and space. Springer

    Google Scholar 

  • Wu H, Gao K, Villafane VE, Watanabe T, Helbling EW (2005) Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl Environ Microbiol 71(9):5004–5013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Rossetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rossetti, V., Bagheri, H. (2015). Multicellular Life Cycles as an Emergent Property in Filamentous Bacteria. In: Ruiz-Trillo, I., Nedelcu, A. (eds) Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9642-2_10

Download citation

Publish with us

Policies and ethics