Skip to main content

CelloS: A Multi-level Approach to Evolutionary Dynamics

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

We study the evolution of simple cells equipped with a genome, a rudimentary gene regulation network at transcription level and two classes of functional genes: motion effectors which allow the cell to move in response to nutrient gradients and nutrient importers required to actually feed from the environment. The model is inspired by the protist Naegleria gruberi which can switch between a feeding and dividing amoeboid state and a mobile flagellate state depending on environmental conditions. Simulation results demonstrate how selection in a variable environment affects the gene number and efficiency making the cells to rapidly switch from one expression regime to the other depending on the external conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banzhaf, W.: On the dynamics of an artificial regulatory network. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 217–227. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43, 1085–1093 (2003)

    Google Scholar 

  3. Deckard, A., Sauro, H.M.: Preliminary studies on the in silico evolution of biochemical networks. ChemBioChem. 5, 1423–1431 (2004)

    Article  Google Scholar 

  4. Ebner, M., Shackleton, M., Shipman, R.: How neutral networks influence evolvability. Complex 7(2), 19–33 (2001)

    Article  MathSciNet  Google Scholar 

  5. Eggenberg, P.: Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Proc. ECAL 1997, pp. 205–213. The MIT Press/Bradford Books (1997)

    Google Scholar 

  6. Fontana, W.: Modelling ’evo-devo’with RNA. BioEssays 24, 1164–1177 (2002)

    Article  Google Scholar 

  7. Fontana, W., Schuster, P.: Shaping space: The possible and the attainable in RNA genotype-phenotype mapping. J. Theor. Biol. 194, 491–515 (1998)

    Article  Google Scholar 

  8. Forst, C.V., Reidys, C.M., Weber, J.: Evolutionary dynamics and optimization: Neutral Networks as model-landscape for RNA secondary-structure folding-landscapes. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS (LNAI), vol. 929, pp. 128–147. Springer, Heidelberg (1995)

    Google Scholar 

  9. François, P., Hakim, V.: Design of genetic networks with specified functions by evolution in silico. Proc. Natl. Acad. Sci. USA 101(2), 580–585 (2004)

    Article  Google Scholar 

  10. Fulton, C., Walsh, C.: Cell differentiation and flagellar elongation in Naegleria gruberi. J. Cell Biol. 85, 346–360 (1980)

    Article  Google Scholar 

  11. Geard, N., Wiles, J.: Structure and dynamics of a gene network model. In: Proc. CEC 2003, pp. 199–206. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  12. Hofacker, I.L.: Vienna RNA secondary structure server. Nucl. Acids Res. 31, 3429–3431 (2003)

    Article  Google Scholar 

  13. Huynen, M.A., Stadler, P.F., Fontana, W.: Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Natl. Acad. Sci. (USA) 93, 397–401 (1996)

    Article  Google Scholar 

  14. Jacob, F., Monod, J.: On the regulation of gene activity. In: Cold Spring Harbor Symp. Quant. Biol., vol. 26, pp. 193–211 (1961)

    Google Scholar 

  15. Kenneth, S.O., Risto, M.: Efficient Reinforcement Learning through Evolving Neural Network Topologies. In: Proc. GECCO-2002, pp. 569–577. Morgen Kaufman, San Francisco (2002)

    Google Scholar 

  16. Klug, S., Famulok, M.: All you wanted to know about SELEX. Mol. Biol. Reports 20, 97–107 (1994)

    Article  Google Scholar 

  17. Athanasius, F.M., Marée, M., Hogeweg, P.: Modelling Dictyostelium discoideum Morphogenesis: the Culmination. Modelling Dictyostelium discoideum Morphogenesis: the Culmination. Bull. Math. Biol. 64, 327–353 (2002)

    Google Scholar 

  18. Merks, R.M.H., Glazier, J.A.: A cell-centered approach to developmental biology. Physica A (2005) (in press)

    Google Scholar 

  19. Reil, T.: Dynamics of gene expression in an artificial genome – inplications for biological and artificial ontogeny. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 457–466. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: A case study in RNA secondary structures. Proc. Roy. Soc. Lond. B225, 279–284 (1994)

    Article  Google Scholar 

  21. Stadler, P.F.: Fitness landscapes arising from the sequence-structure maps of biopolymers. J. Mol. Struct. (THEOCHEM) 463, 7–19 (1999); Santa Fe Institute Preprint 97-11-082

    Article  Google Scholar 

  22. van Nimwegen, E., Crutchfield, J.P., Huynen, M.A.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA 96, 9716–9720 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Attolini, C.SO., Stadler, P.F., Flamm, C. (2005). CelloS: A Multi-level Approach to Evolutionary Dynamics. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_51

Download citation

  • DOI: https://doi.org/10.1007/11553090_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics