Skip to main content

Self-adaptation of Genome Size in Artificial Organisms

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

In this paper we investigate the evolutionary pressures influencing genome size in artificial organisms. These were designed with three organisation levels (genome, proteome, phenotype) and are submitted to local mutations as well as rearrangements of the genomic structure. Experiments with various per-locus mutation rates show that the genome size always stabilises, although the fitness computation does not penalise genome length. The equilibrium value is closely dependent on the mutational pressure, resulting in a constant genome-wide mutation rate and a constant average impact of rearrangements. Genome size therefore self-adapts to the variation intensity, reflecting a balance between at least two pressures: evolving more and more complex functions with more and more genes, and preserving genome robustness by keeping it small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maynard-Smith, J.: Overview - unsolved evolutionary problems. In: Dover, G.A., Flavell, R.B. (eds.) Genome evolution, pp. 375–382. Academic Press, New York (1982)

    Google Scholar 

  2. Lenski, R.E.: Phenotypic and genomic evolution during a 20,000-generation experiment with the bacterium Escherichia coli. Plant Breeding Reviews 24, 225–265 (2004)

    MathSciNet  Google Scholar 

  3. Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid accurate optimization of difficult problems using fast messy genetic algorithms. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 56–64. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  4. Burke, D.S., De Jong, K.A., Grefenstette, J.J., Ramsey, C.L., Wu, A.S.: Putting more genetics into genetic algorithms. Evolutionary Computation 6, 387–410 (1998)

    Article  Google Scholar 

  5. Ochoa, G., Harvey, I., Buxton, H.: Optimal mutation rates ans selection pressure in genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2000). Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  6. Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization. Springer, Heidelberg (1979)

    Google Scholar 

  7. Petrov, D.A.: Mutational equilibrium model of genome size evolution. Theoretical Population Biology 61, 533–546 (2002)

    Article  Google Scholar 

  8. Mira, A., Ochman, H., Moran, N.A.: Deletional bias and the evolution of bacterial genomes. Trends in Genetics 17, 589–596 (2001)

    Article  Google Scholar 

  9. Gregory, T.R.: Coincidence, coevolution, or causation? dna content, cell size, and the C-value enigma. Biological Reviews of the Cambridge Philosophical Society 76, 65–101 (2001)

    Article  Google Scholar 

  10. Doolittle, W.F., Sapienza, C.: Selfish genes,the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980)

    Article  Google Scholar 

  11. Ohno, S.: So much junk dna in our genome. In: Smith, H.H. (ed.) Evolution of Genetic Systems, New York, Gordon, Breach, pp. 336–370 (1972)

    Google Scholar 

  12. Eigen, M., McCaskill, J., Schuster, P.: The molecular quasi-species. Adv. Chem. Phys. 75, 149–263 (1989)

    Article  Google Scholar 

  13. Van Nimwegen, E., Crutchfield, J.P., Huynen, M.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA 96, 9716–9720 (1999)

    Article  Google Scholar 

  14. Ofria, C., Wilke, C.: Avida: A software platform for research in computational evolutionary biology. Artificial Life 10, 191–229 (2004)

    Article  Google Scholar 

  15. Wilke, C.O., Wang, J.L., Ofria, C., Lenski, R.E., Adami, C.: Evolution of digital organisms at high mutation rates leads to the survival of the flattest. Nature 412, 331–333 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knibbe, C., Beslon, G., Lefort, V., Chaudier, F., Fayard, J.M. (2005). Self-adaptation of Genome Size in Artificial Organisms. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_43

Download citation

  • DOI: https://doi.org/10.1007/11553090_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics