Skip to main content

Human Pluripotent Stem Cells to Engineer Blood Vessels

  • Chapter
  • First Online:
Engineering and Application of Pluripotent Stem Cells

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 163))

Abstract

Development of pluripotent stem cells (PSCs) is a remarkable scientific advancement that allows scientists to harness the power of regenerative medicine for potential treatment of disease using unaffected cells. PSCs provide a unique opportunity to study and combat cardiovascular diseases, which continue to claim the lives of thousands each day. Here, we discuss the differentiation of PSCs into vascular cells, investigation of the functional capabilities of the derived cells, and their utilization to engineer microvascular beds or vascular grafts for clinical application.

Graphical Abstract Human iPSCs generated from patients are differentiated toward ECs and perivascular cells for use in disease modeling, microvascular bed development, or vascular graft fabrication

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Note: Alterations to the root abbreviation are indicated in parentheses or brackets.

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

bFGF:

Basic fibroblast growth factor

BMPR2:

Bone morphogenetic protein receptor type II

BP:

Burst pressure

CAD:

Coronary artery disease

CCD:

Chronic cardiovascular defects

DO:

Dissolved oxygen

DPI:

Diphenyleneiodonium

EB:

Embryoid body

EC:

Endothelial cell

ECM:

Extracellular matrix

EVC:

Early vascular cell

FBN1:

Fibrillin1

FPAH :

Family members of pulmonary arterial hypertension

HA:

Hyaluronic acid

(h)ESC:

(Human) embryonic stem cell

HIF:

Hypoxia-inducible factors

(h)[i]PSC:

(Human) [induced] pluripotent stem cell

HUVECs:

Human umbilical vein endothelial cells

ITA:

Internal thoracic artery

MFS:

Marfan syndrome

MMP:

Matrix metalloproteinase

PDGF-BB:

Platelet-derived growth factor-BB

PEG:

Poly(ethylene glycol)

PEGDA:

PEG-diacrylate

PGA:

Polyglycolic acid

ROS:

Reactive oxygen species

SMA:

Smooth muscle actin

SMMHC:

Smooth muscle myosin heavy chain

SRS:

Suture retention strength

(s)TEVG:

(Small-diameter) tissue engineered vascular graft

SV:

Saphenous vein

TESA:

Tissue engineering by self-assembly

TGFβ:

Transforming growth factor β

UMC:

Unaffected mutation carrier

VEGF(R):

Vascular endothelial growth factor (receptor)

vSMC:

Vascular smooth muscle cell

References

  1. Smith Q, Gerecht S (2014) Going with the flow: microfluidic platforms in vascular tissue engineering. Curr Opin Chem Eng 3:42–50. https://doi.org/10.1016/j.coche.2013.11.001

    Article  Google Scholar 

  2. Pate M, Damarla V., Chi, DS., Negi S, Krishnaswamy G. (2010) Adv Clin Chem 52:109–130

    Google Scholar 

  3. Takahashi K et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  Google Scholar 

  4. Yu J et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  Google Scholar 

  5. Li R et al. (2014) Shear stress–activated Wnt-Angiopoietin-2 signaling recapitulates vascular repair in zebrafish embryos. Arterioscler Thromb Vasc Biol 34:2268–2275

    Article  CAS  Google Scholar 

  6. Deng XY et al. (2015) Non-viral methods for generating integration-free, induced pluripotent stem cells. Curr Stem Cell Res Ther 10:153–158

    Article  CAS  Google Scholar 

  7. Choi KD et al. (2009) Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 27:559–567. https://doi.org/10.1634/stemcells.2008-0922

    Article  CAS  Google Scholar 

  8. Vodyanik MA, Bork JA, Thomson JA, Slukvin II (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105:617–626. https://doi.org/10.1182/blood-2004-04-1649

    Article  CAS  Google Scholar 

  9. Marchand M et al. (2014) Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor. Stem Cells Transl Med 3:91–97. https://doi.org/10.5966/sctm.2013-0124

    Article  CAS  Google Scholar 

  10. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680. https://doi.org/10.1016/j.cell.2008.02.008

    Article  CAS  Google Scholar 

  11. Dang SM, Gerecht-Nir S, Chen J, Itskovitz-Eldor J, Zandstra PW (2004) Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22:275–282. https://doi.org/10.1634/stemcells.22-3-275

    Article  Google Scholar 

  12. Rufaihah AJ et al. (2011) Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31:e72–e79. https://doi.org/10.1161/ATVBAHA.111.230938

    Article  CAS  Google Scholar 

  13. Adams WJ et al. (2013) Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Rep 1:105–113. https://doi.org/10.1016/j.stemcr.2013.06.007

    Article  CAS  Google Scholar 

  14. James D et al. (2010) Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGF beta inhibition is Id1 dependent. Nat Biotechnol 28:161–U115. https://doi.org/10.1038/nbt1605

    Article  CAS  Google Scholar 

  15. Xie CQ et al. (2007) A highly efficient method to differentiate smooth muscle cells from human embryonic stem cells. Arterioscler Thromb Vasc Biol 27:e311–e312. https://doi.org/10.1161/ATVBAHA.107.154260

    Article  CAS  Google Scholar 

  16. Lee TH et al. (2010) Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circ Res 106:120–128. https://doi.org/10.1161/CIRCRESAHA.109.207902

    Article  CAS  Google Scholar 

  17. Patsch C et al. (2015) Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17:994–1003. https://doi.org/10.1038/ncb3205. http://www.nature.com/ncb/journal/v17/n8/abs/ncb3205.html - supplementary-information

    Article  CAS  Google Scholar 

  18. Lian X et al. (2014) Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Rep 3:804–816. https://doi.org/10.1016/j.stemcr.2014.09.005

    Article  CAS  Google Scholar 

  19. Kusuma S et al. (2013) Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci 110:12601–12606

    Article  CAS  Google Scholar 

  20. Chan XY et al. (2015) Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells. Arterioscler Thromb Vasc Biol 35:2677–2685. https://doi.org/10.1161/ATVBAHA.115.306362

    Article  CAS  Google Scholar 

  21. Wanjare M, Kuo F, Gerecht S (2013) Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells. Cardiovasc Res 97:321–330

    Article  CAS  Google Scholar 

  22. Yang LB et al. (2016) Differentiation of human induced-pluripotent stem cells into smooth-muscle cells: two novel protocols. PLoS One 11(1):e0147155.ARTN e0147155. https://doi.org/10.1371/journal.pone.0147155

    Article  Google Scholar 

  23. Gu M et al. (2016) Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers. Cell Stem Cell 20(4):490–504.e5. https://doi.org/10.1016/j.stem.2016.08.019

    Article  Google Scholar 

  24. Granata A et al. (2017) An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat Genet 49:97–109. https://doi.org/10.1038/ng.3723

    Article  CAS  Google Scholar 

  25. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91. https://doi.org/10.1146/annurev.cb.11.110195.000445

    Article  CAS  Google Scholar 

  26. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674. https://doi.org/10.1038/386671a0

    Article  CAS  Google Scholar 

  27. Edgar LT et al. (2014) Mechanical interaction of angiogenic microvessels with the extracellular matrix. J Biomech Eng 136:021001. https://doi.org/10.1115/1.4026471

    Article  Google Scholar 

  28. Macklin BL, Gerecht S (2017) Bridging the gap: induced pluripotent stem cell derived endothelial cells for 3D vascular assembly. Curr Opin Chem Eng 15:102–109

    Article  Google Scholar 

  29. Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 195:122–143. https://doi.org/10.1159/000331410

    Article  CAS  Google Scholar 

  30. Silver FH, Horvath I, Foran DJ (2001) Viscoelasticity of the vessel wall: the role of collagen and elastic fibers. Crit Rev Biomed Eng 29:279–301

    Article  CAS  Google Scholar 

  31. Bersini S et al. (2016) Cell-microenvironment interactions and achritectures in microvascular systems. Biotechno Adv 34:1113–1130

    Article  CAS  Google Scholar 

  32. Edgar LT, Underwood CJ, Guilkey JE, Hoying JB, Weiss JA (2014) Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS One 9:e85178. https://doi.org/10.1371/journal.pone.0085178

    Article  Google Scholar 

  33. Park YK et al. (2014) In vitro microvessel growth and remodeling within a three-dimensional microfluidic environment. Cell Mol Bioeng 7:15–25. https://doi.org/10.1007/s12195-013-0315-6

    Article  Google Scholar 

  34. Hanjaya-Putra D et al. (2010) Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells. J Cell Mol Med 14:2436–2447. https://doi.org/10.1111/j.1582-4934.2009.00981.x

    Article  Google Scholar 

  35. Sokic S, Papavasiliou G (2012) Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro. Tissue Eng Part A 18:2477–2486. https://doi.org/10.1089/ten.TEA.2012.0173

    Article  CAS  Google Scholar 

  36. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2011) The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (epsilon-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials 32:8108–8117. https://doi.org/10.1016/j.biomaterials.2011.07.022

    Article  CAS  Google Scholar 

  37. Hanjaya-Putra D et al. (2011) Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118:804–815. https://doi.org/10.1182/blood-2010-12-327338

    Article  CAS  Google Scholar 

  38. Manalo DJ et al. (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–669. https://doi.org/10.1182/blood-2004-07-2958

    Article  CAS  Google Scholar 

  39. Calvani M, Rapisarda A, Uranchimeg B, Shoemaker RH, Melillo G (2006) Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood 107:2705–2712. https://doi.org/10.1182/blood-2005-09-3541

    Article  CAS  Google Scholar 

  40. Abaci HE, Truitt R, Tan S, Gerecht S (2011) Unforeseen decreases in dissolved oxygen levels affect tube formation kinetics in collagen gels. Am J Physiol Cell Physiol 301:C431–C440. https://doi.org/10.1152/ajpcell.00074.2011

    Article  CAS  Google Scholar 

  41. Park KM, Gerecht S (2014) Hypoxia-inducible hydrogels. Nat Commun 5:4075. https://doi.org/10.1038/ncomms5075

    CAS  Google Scholar 

  42. Abilez O et al. (2006) A novel culture system shows that stem cells can be grown in 3D and under physiologic pulsatile conditions for tissue engineering of vascular grafts. J Surg Res 132:170–178

    Article  CAS  Google Scholar 

  43. Gui L, Muto A, Chan SA, Breuer CK, Niklason LE (2009) Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue Eng A 15:2665–2676

    Article  CAS  Google Scholar 

  44. Sundaram S, Echter A, Sivarapatna A, Qiu C, Niklason L (2014) Small-diameter vascular graft engineered using human embryonic stem cell-derived mesenchymal cells. Tissue Eng A 20:740–750

    CAS  Google Scholar 

  45. Thompson CA et al. (2002) A novel pulsatile, laminar flow bioreactor for the development of tissue-engineered vascular structures. Tissue Eng 8:1083–1088

    Article  CAS  Google Scholar 

  46. Mozaffarian D, Benjamin E, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després J-P, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, DK MG, Mohler 3rd ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, MBB T, on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–322. https://doi.org/10.1161/CIR.0000000000000152

    Article  Google Scholar 

  47. Jia H, Caputo M, Ghorbel MT (2013) Stem cells in vascular graft tissue engineering for congenital heart surgery. Interv Cardiol 5:647–662

    Article  Google Scholar 

  48. Children’s Heart Foundation (2012) About CHF: Fact Sheets. Children’s Heart Foundation, Lincolnshire. Available at http://www.childrensheartfoundation.org/about-chf/fact-sheets

  49. Patterson JT et al. (2012) Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med 7:409–419

    Article  CAS  Google Scholar 

  50. Webb CL et al. (2002) Collaborative care for adults with congenital heart disease. Circulation 105:2318–2323

    Article  Google Scholar 

  51. Connelly MS et al. (1998) Canadian consensus conference on aadult congenital heart disease 1996. Can J Cardiol 14:395–452

    CAS  Google Scholar 

  52. Chin AJ, Whitehead KK, Watrous RL (2010) Insights after 40 years of the Fontan operation. World J Pediatr Congenit Heart Surg 1:328–343

    Article  Google Scholar 

  53. Mayer Jr J et al. (1992) Factors associated with marked reduction in mortality for Fontan operations in patients with single ventricle. J Thorac Cardiovasc Surg 103:444–451.discussion 451-442

    Google Scholar 

  54. Adachi I et al. (2005) Fontan operation with a viable and growing conduit using pedicled autologous pericardial roll: serial changes in conduit geometry. J Thorac Cardiovasc Surg 130:1517–1522.e1511

    Article  Google Scholar 

  55. Woods RK, Dyamenahalli U, Duncan BW, Rosenthal GL, Lupinetti FM (2003) Comparison of extracardiac Fontan techniques: pedicled pericardial tunnel versus conduit reconstruction. J Thorac Cardiovasc Surg 125:465–471

    Article  Google Scholar 

  56. Diodato M, Chedrawy EG (2014) Coronary artery bypass graft surgery: the past, present, and future of myocardial revascularisation. Surg Res Pract 2014:6. https://doi.org/10.1155/2014/726158

    Google Scholar 

  57. Lee Y-U et al. (2014) Implantation of inferior vena cava interposition graft in mouse model. J Vis Exp 2014(88):51632. https://doi.org/10.3791/51632

    Google Scholar 

  58. Buttafoco L et al. (2006) Physical characterization of vascular grafts cultured in a bioreactor. Biomaterials 27:2380–2389

    Article  CAS  Google Scholar 

  59. Zhang X et al. (2009) Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts. Biomaterials 30:3213–3223

    Article  CAS  Google Scholar 

  60. Williams C, Wick TM (2004) Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng 10:930–941

    Article  CAS  Google Scholar 

  61. Neumann T, Nicholson BS, Sanders JE (2003) Tissue engineering of perfused microvessels. Microvasc Res 66:59–67

    Article  CAS  Google Scholar 

  62. Hahn MS, McHale MK, Wang E, Schmedlen RH, West JL (2007) Physiologic pulsatile flow bioreactor conditioning of poly (ethylene glycol)-based tissue engineered vascular grafts. Ann Biomed Eng 35:190–200

    Article  Google Scholar 

  63. Niklason L et al. (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  CAS  Google Scholar 

  64. Pashneh-Tala S, MacNeil S, Claeyssens F (2015) The tissue-engineered vascular graft—past, present, and future. Tissue Eng Part B Rev 22:68–100

    Google Scholar 

  65. van Hinsbergh VW (2012) Endothelium—role in regulation of coagulation and inflammation. Semin Immunopath 34(1):93–106. https://doi.org/10.1007/s00281-011-0285

    Article  Google Scholar 

  66. Brisbois EJ et al. (2015) Reduction in thrombosis and bacterial adhesion with 7 day implantation of S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As catheters in sheep. J Mater Chem B 3:1639–1645

    Article  CAS  Google Scholar 

  67. Fleser PS et al. (2004) Nitric oxide–releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts. J Vasc Surg 40:803–811

    Article  Google Scholar 

  68. Elliott MB, Gerecht S (2016) Three-dimensional culture of small-diameter vascular grafts. J Mater Chem B 4:3443–3453

    Article  CAS  Google Scholar 

  69. McFadden T et al. (2013) The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo. Acta Biomater 9:9303–9316

    Article  CAS  Google Scholar 

  70. Khan OF, Chamberlain MD, Sefton MV (2011) Toward an in vitro vasculature: differentiation of mesenchymal stromal cells within an endothelial cell-seeded modular construct in a microfluidic flow chamber. Tissue Eng A 18:744–756

    Article  Google Scholar 

  71. Pedram A, Razandi M, Levin ER (1998) Extracellular signal-regulated protein kinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 273:26722–26728

    Article  CAS  Google Scholar 

  72. Eddahibi S et al. (2006) Cross talk between endothelial and smooth muscle cells in pulmonary hypertension critical role for serotonin-induced smooth muscle hyperplasia. Circulation 113:1857–1864

    Article  CAS  Google Scholar 

  73. Hibino N et al. (2012) Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. J Thorac Cardiovasc Surg 143:696–703

    Article  CAS  Google Scholar 

  74. Askari F, Solouk A, Shafieian M, Seifalian AM (2017) Stem cells for tissue engineered vascular bypass grafts. Artif Cells Nanomed Biotechnol 45(5):999–1010. https://doi.org/10.1080/21691401.2016.1198366

    Article  CAS  Google Scholar 

  75. Bajpai VK, Andreadis ST (2012) Stem cell sources for vascular tissue engineering and regeneration. Tissue Eng Part B Rev 18:405–425

    Article  CAS  Google Scholar 

  76. Wang Y et al. (2014) Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials 35:8960–8969

    Article  CAS  Google Scholar 

  77. Sundaram S et al. (2014) Tissue-engineered vascular grafts created from human induced pluripotent stem cells. Stem Cells Transl Med 3:1535–1543

    Article  CAS  Google Scholar 

  78. Gui L et al. (2016) Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 102:120–129

    Article  CAS  Google Scholar 

  79. Prokhorova TA et al. (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 18:47–54

    Article  CAS  Google Scholar 

  80. Sivarapatna A et al. (2015) Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor. Biomaterials 53:621–633

    Article  CAS  Google Scholar 

  81. Dash BC et al. (2016) Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells. Stem Cell Rep 7:19–28

    Article  CAS  Google Scholar 

  82. Gui L et al. (2014) Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days. Tissue Eng A 20:1499–1507

    Article  CAS  Google Scholar 

  83. Samuel R et al. (2013) Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc Natl Acad Sci 110:12774–12779

    Article  CAS  Google Scholar 

  84. Chan XY et al. (2015) Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells. Arterioscler Thromb Vasc Biol 35:2677–2685

    Article  CAS  Google Scholar 

  85. de Carvalho JL et al. (2015) Production of human endothelial cells free from soluble xenogeneic antigens for bioartificial small diameter vascular graft endothelization. Biomed Res Int 2015:8

    Google Scholar 

  86. Lin B et al. (2012) High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovasc Res 95:327–335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Gerecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chan, X.Y., Elliott, M.B., Macklin, B., Gerecht, S. (2017). Human Pluripotent Stem Cells to Engineer Blood Vessels. In: Martin, U., Zweigerdt, R., Gruh, I. (eds) Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, vol 163. Springer, Cham. https://doi.org/10.1007/10_2017_28

Download citation

Publish with us

Policies and ethics