Skip to main content

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 132))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANN:

Artificial neural network

CER:

Carbon dioxide evolution rate

C feed :

Substrate concentration in feed flow

CPR:

Carbon dioxide production rate

DO:

Dissolved oxygen

e(t):

Control deviation at time t

EKF:

Extended Kalman filter

FIA:

Flow injection analysis

F0(t):

Feeding rate

Fb(t):

Feeding rate due to feedback part

GC:

Gas chromatography

HCDC:

High-cell-density cultivation

K :

PID controller parameter matrix

K d :

PID controller parameter, derivative part

K i :

PID controller parameter, integral part

K L a :

Oxygen transfer coefficient

K p :

PID controller parameter, proportional part

LLM:

Local linear model

LoLiMoT:

Local linear model tree

m :

Substrate consumption due to cell maintenance

MIMO:

Multiple-input multiple-output

MISO:

Multiple-input single-output

MPC:

Model predictive controller

NMPC:

Nonlinear model predictive controller

ORP:

Oxidation–reduction potential

OTR:

Oxygen transfer rate

OUR:

Oxygen uptake rate

PID:

Proportional–integral–derivative

r DO :

Specific oxygen consumption rate

r DO X t :

Oxygen consumption rate

SISO:

Single-input single-output

t :

Time

u(t):

Control action at time t

V :

Cultivation volume

V 0 :

Initial volume

V head :

Volume of head space

X :

Biomass

x(t),x:

Input values (measurement)

X 0 :

Initial biomass

Y XS :

Yield factor for biomass formation

μ :

Specific growth rate

μB(X):

Membership function of a fuzzy logic controller

μ sp :

Set-point of specific growth rate

τ :

Integration variable

References

  1. Becker T, Hitzmann B, Muffler K, Pörtner R, Reardon K, Stahl F, Ulber R (2007) Future aspects of bioprocess monitoring. In: Ulber R, Sell D (eds) Advances in biochemical engineering/biotechnology vol 105. Springer, Berlin, pp 249–293. doi:10.1007/10_2006_036

    Google Scholar 

  2. Navrátil M, Norberg A, Lembrén L, Mandenius C-F (2005) On-line multi-analyzer monitoring of biomass, glucose and acetate for growth rate control of a vibrio cholerae fed-batch cultivation. J Biotechnol 115(1):67–79. doi:10.1016/j.jbiotec.2004.07.013

    Article  Google Scholar 

  3. Warth B, Rajkai G, Mandenius CF (2010) Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant protein. J Biotechnol 147(1):37–45. doi:10.1016/j.jbiotec.2010.02.023

    Article  CAS  Google Scholar 

  4. Luttmann R, Bracewell DG, Cornelissen G, Gernaey KV, Glassey J, Hass VC, Kaiser C, Preusse C, Striedner G, Mandenius C-F (2012) Soft sensors in bioprocessing: a status report and recommendations. Biotechnol J doi:10.1002/biot.201100506

  5. Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensors in the process industry. Comput Chem Eng 33(4):795–814. doi:10.1016/j.compchemeng.2008.12.012

    Article  CAS  Google Scholar 

  6. Jain G, Jayaraman G, Kökpinar Ö, Rinas U, Hitzmann B (2011) On-line monitoring of recombinant bacterial cultures using multi-wavelength fluorescence spectroscopy. Biochem Eng J 58–59:133–139. doi:10.1016/j.bej.2011.09.005

    Article  Google Scholar 

  7. Jenzsch M, Simutis R, Lübbert A (2006) Generic model control of the specific growth rate in recombinant Escherichia coli cultivations. J Biotechnol 122(4):483–493

    Article  CAS  Google Scholar 

  8. Hulhoven X, Wouwer AV, Bogaerts P (2006) Hybrid extended Luenberger-asymptotic observer for bioprocess state estimation. Chem Eng Sci 61(21):7151–7160. doi:10.1016/j.ces.2006.06.018

    Article  CAS  Google Scholar 

  9. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng (82 (Series D)):35–45. doi:citeulike-article-id:347166

    Google Scholar 

  10. Kawohl M, Heine T, King R (2007) Model based estimation and optimal control of fed-batch fermentation processes for the production of antibiotics. Chem Eng Process Process Intensif 46(11):1223–1241

    Article  CAS  Google Scholar 

  11. Lidgren L, Lilja O, Krook M, Kriz D (2006) Automatic fermentation control based on a real-time in situ SIRE® biosensor regulated glucose feed. Biosens Bioelectron 21(10):2010–2013

    Article  CAS  Google Scholar 

  12. Kriz D, Berggren C, Johansson A, Ansell RJ (1998) SIRE-technology. Part I. Amperometric biosensor based on flow injection of the recognition element and differential measurements. Instrum Sci Technol 26(1):45–57. doi:10.1080/10739149808002089

    Article  CAS  Google Scholar 

  13. Gnoth S, Jenzsch M, Simutis R, Lübbert A (2007) Process analytical technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control. J Biotechnol 132(2):180–186

    Article  CAS  Google Scholar 

  14. Arndt M, Hitzmann B (2004) Kalman filter based glucose control at small set points during fed-batch cultivation of Saccharomyces cerevisiae. Biotechnol Prog 20(1):377–383. doi:10.1021/bp034156p

    Article  CAS  Google Scholar 

  15. Arndt M, Kleist S, Miksch G, Friehs K, Flaschel E, Trierweiler J, Hitzmann B (2005) A feedforward feedback substrate controller based on a Kalman filter for a fed-batch cultivation of Escherichia coli producing phytase. Comput Chem Eng 29(5):1113–1120

    Article  CAS  Google Scholar 

  16. Kleist S, Miksch G, Hitzmann B, Arndt M, Friehs K, Flaschel E (2003) Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies. Appl Microbiol Biotechnol 61(5):456–462. doi:10.1007/s00253-003-1229-3

    CAS  Google Scholar 

  17. Klockow C, Hüll D, Hitzmann B (2008) Model based substrate set point control of yeast cultivation processes based on FIA measurements. Anal Chim Acta 623(1):30–37. doi:10.1016/j.aca.2008.06.011

    Article  CAS  Google Scholar 

  18. Roeva O, Slavov T, Dimov I, Dimova S, Kolkovska N (2008) fed-batch cultivation control based on genetic algorithm PID controller tuning numerical methods and applications, vol 6046. Lecture Notes in Computer Science. Springer, Berlin, pp 289–296. doi:10.1007/978-3-642-18466-6_34

    Google Scholar 

  19. Tsonyo S, Roeva O (2011) Genetic algorithm tuning of PID controller in smith predictor for glucose concentration control. Int J BIO Autom 15(2):101–114

    Google Scholar 

  20. Wahab NA, Katebi R, Balderud J (2009) Multivariable PID control design for activated sludge process with nitrification and denitrification. Biochem Eng J 45(3):239–248

    Article  CAS  Google Scholar 

  21. Biener R, Steinkämper A, Hofmann J (2010) Calorimetric control for high cell density cultivation of a recombinant Escherichia coli strain. J Biotechnol 146(1–2):45–53

    Article  CAS  Google Scholar 

  22. Biener R, Steinkämper A, Horn T (2012) Calorimetric control of the specific growth rate during fed-batch cultures of Saccharomyces cerevisiae. J Biotechnol 160(3–4):195–201

    Google Scholar 

  23. Soons ZITA, Voogt JA, van Straten G, van Boxtel AJB (2006) Constant specific growth rate in fed-batch cultivation of Bordetella pertussis using adaptive control. J Biotechnol 125(2):252–268

    Article  CAS  Google Scholar 

  24. Bodizs L, Titica M, Faria N, Srinivasan B, Dochain D, Bonvin D (2007) Oxygen control for an industrial pilot-scale fed-batch filamentous fungal fermentation. J Process Control 17(7):595–606

    Article  CAS  Google Scholar 

  25. Chung YC, Chien IL, Chang DM (2006) Multiple-model control strategy for a fed-batch high cell-density culture processing. J Process Control 16(1):9–26

    Article  CAS  Google Scholar 

  26. Ranjan AP, Gomes J (2009) Simultaneous dissolved oxygen and glucose regulation in fed-batch methionine production using decoupled input output linearizing control. J Process Control 19(4):664–677

    Article  CAS  Google Scholar 

  27. Davison E (1976) Multivariable tuning regulators: the feedforward and robust control of a general servomechanism problem. IEEE Trans Autom Control 21(1):35–47. doi:10.1109/tac.1976.1101126

    Article  Google Scholar 

  28. Penttinen J, Koivo HN (1980) Multivariable tuning regulators for unknown systems. Automatica 16(4):393–398

    Article  Google Scholar 

  29. Maciejowski JM (1989) Multivariable feedback design. Addison-Wiley, Upper Saddle River

    Google Scholar 

  30. Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors, vol 1. Elsevier, Amsterdam

    Google Scholar 

  31. Roeva O, Slavov T, Dimov I, Dimova S, Kolkovska N (2011) Fed-batch cultivation control based on genetic algorithm PID controller tuning numerical methods and applications. vol 6046. Lecture Notes in Computer Science. Springer, Berlin, pp 289–296. doi:10.1007/978-3-642-18466-6_34

    Google Scholar 

  32. Roeva O (2008) Improvement of genetic algorithm performance for identification of cultivation process models. Paper presented at the proceedings of the 9th WSEAS international conference on evolutionary computing, Sofia, Bulgaria

    Google Scholar 

  33. Roeva O (2005) Genetic algorithms for a parameter estimation of a fermentation process model: a comparison. Bioautomation 3:19–28

    Google Scholar 

  34. Perrier M, de Azevedo SF, Ferreira EC, Dochain D (2000) Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters. Control Eng Pract 8(4):377–388

    Article  Google Scholar 

  35. Mazouni D, Ignatova M, Harmand J (2004) A simple mass balance model for biological sequencing batch reactors used for carbon and nitrogen removal. Automatic systems for building the infrastructure in developing countries, vol IFAC-DECOM04. Bansko, Bulgaria

    Google Scholar 

  36. Lyubenova V, Ignatova M, Novak M, Patarinska T (2007) Reaction rates estimators of fed-batch process for poly- b-hydroxybutyrate (PHB) production by mixed culture. Biotechnol BioE 21(1):113–116

    CAS  Google Scholar 

  37. Ignatova M, Lyubenova V (2007) Control of class bioprocesses using on-line information of intermediate metabolite production and con-sumption rates. Acta universitatis cibiniensis Series E: Food Technol 11:3–16

    Google Scholar 

  38. Ignatova M, Lyubenova V (2007) Adaptive control of fed-batch process for poly-b hydroxybutyrate production by mixed culture. Acad Sci 60(5):517–524

    CAS  Google Scholar 

  39. Kansha Y, Jia L, Chiu MS (2008) Self-tuning PID controllers based on the Lyapunov approach. Chem Eng Sci 63(10):2732–2740

    Article  CAS  Google Scholar 

  40. Chang WD, Hwang RC, Hsieh JG (2002) A self-tuning PID control for a class of nonlinear systems based on the Lyapunov approach. J Process Control 12(2):233–242. doi:10.1016/s0959-1524(01)00041-5

    Article  CAS  Google Scholar 

  41. Renard F, Vande Wouwer A, Valentinotti S, Dumur D (2006) A practical robust control scheme for yeast fed-batch cultures—an experimental validation. J Process Control 16(8):855–864. doi:10.1016/j.jprocont.2006.02.003

    Article  CAS  Google Scholar 

  42. Renard F, Vande Wouwer A (2008) Robust adaptive control of yeast fed-batch cultures. Comput Chem Eng 32(6):1238–1248. doi:10.1016/j.compchemeng.2007.05.008

    Article  CAS  Google Scholar 

  43. Dewasme L, Richelle A, Dehottay P, Georges P, Remy M, Bogaerts P, Vande Wouwer A (2010) Linear robust control of S. cerevisiae fed-batch cultures at different scales. Biochem Eng J 53(1):26–37. doi:10.1016/j.bej.2009.10.001

  44. Cannizzaro C, Valentinotti S, von Stockar U (2004) Control of yeast fed-batch process through regulation of extracellular ethanol concentration. Bioprocess Biosyst Eng 26(6):377–383. doi:10.1007/s00449-004-0384-y

    Article  CAS  Google Scholar 

  45. Valentinotti S, Srinivasan B, Holmberg U, Bonvin D, Cannizzaro C, Rhiel M, von Stockar U (2003) Optimal operation of fed-batch fermentations via adaptive control of overflow metabolite. Control Eng Pract 11(6):665–674. doi:10.1016/s0967-0661(02)00172-7

    Article  Google Scholar 

  46. Hocalar A, Tüker M (2010) Model based control of minimal overflow metabolite in technical scale fed-batch yeast fermentation. Biochem Eng J 51(1):64–71

    Article  CAS  Google Scholar 

  47. Ruano MV, Ribes J, Seco A, Ferrer J (2012) An advanced control strategy for biological nutrient removal in continuous systems based on pH and ORP sensors. Chem Eng J 183:212–221. doi:10.1016/j.cej.2011.12.064

    Article  CAS  Google Scholar 

  48. Causa J, Karer G, Núnez A, Sáez D, Skrjanc I, Zupancic B (2008) Hybrid fuzzy predictive control based on genetic algorithms for the temperature control of a batch reactor. Comput Chem Eng 32(12):3254–3263

    Article  CAS  Google Scholar 

  49. Potocnik B, Music G, Zupancic B (2004) Model predictive control systems with discrete inputs. In: Electrotechnical conference, 2004. MELECON 2004. Proceedings of the 12th IEEE mediterranean, 12–15 May 2004, pp 383–386 vol 381.doi:10.1109/melcon.2004.1346886

  50. Karer G, Mušič G, Škrjanc I, Zupančič B (2007) Hybrid fuzzy modelling for model predictive control. J Intell Robot Syst 50(3):297–319. doi:10.1007/s10846-007-9166-5

    Article  Google Scholar 

  51. Karer G, Musšič G, Škrjanc I, Zupančič B (2007) Hybrid fuzzy model-based predictive control of temperature in a batch reactor. Comput Chem Eng 31(12):1552–1564

    Article  CAS  Google Scholar 

  52. Cosenza B, Galluzzo M (2011) Nonlinear fuzzy control of a fed-batch reactor for penicillin production. Comput Chem Eng 36:273–281

    Article  Google Scholar 

  53. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybernet 15(1):116–132

    Article  Google Scholar 

  54. Belchior CAC, Araujo RAM, Landeck JAC (2011) Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control. Comput Chem Eng 37:152–162

    Article  Google Scholar 

  55. Karakuzu C, Türker M, Öztürk S (2006) Modelling, on-line state estimation and fuzzy control of production scale fed-batch baker’s yeast fermentation. Control Eng Pract 14(8):959–974

    Article  Google Scholar 

  56. Gadkar KG, Mehra S, Gomes J (2005) On-line adaptation of neural networks for bioprocess control. Comput Chem Eng 29(5):1047–1057

    Article  CAS  Google Scholar 

  57. Ashoori A, Moshiri B, Khaki-Sedigh A, Bakhtiari MR (2009) Optimal control of a nonlinear fed-batch fermentation process using model predictive approach. J Process Control 19(7):1162–1173

    Article  CAS  Google Scholar 

  58. Birol G, Ündey C, Cinar A (2002) A modular simulation package for fed-batch fermentation: penicillin production. Comput Chem Eng 26(11):1553–1565

    Article  CAS  Google Scholar 

  59. Santos LO, Dewasme L, Coutinho D, Wouwer AV (2011) Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: assessment and robustness. Comput Chem Eng 39:143–151

    Article  Google Scholar 

  60. Xu Z, Zhao J, Qian J, Zhu Y (2009) Nonlinear MPC using an identified LPV model. Ind Eng Chem Res 48(6):3043–3051. doi:10.1021/ie801057q

    Article  CAS  Google Scholar 

  61. Gong Z (2009) A multistage system of microbial fed-batch fermentation and its parameter identification. Math Comput Simul 80(9):1903–1910

    Article  Google Scholar 

  62. Lawryńczuk M (2011) Online set-point optimisation cooperating with predictive control of a yeast fermentation process: a neural network approach. Eng Appl Artif Intell 24(6):968–982. doi:10.1016/j.engappai.2011.04.007

    Article  Google Scholar 

  63. Nelles O (2001) Nonlinear system identification. Springer, Berlin

    Google Scholar 

  64. Meleiro LAC, Von Zuben FJ, Filho RM (2009) Constructive learning neural network applied to identification and control of a fuel-ethanol fermentation process. Eng Appl Artif Intell 22(2):201–215. doi:10.1016/j.engappai.2008.06.001

    Article  Google Scholar 

  65. Velut S, de Marco L, Hagander P (2007) Bioreactor control using a probing feeding strategy and mid-ranging control. Control Eng Pract 15(2):135–147

    Article  Google Scholar 

  66. Velut S, Castan A, Short KA, Axelsson JP, Hagander P, Zditosky BA, Rysenga CW, De Maré L, Haglund J (2007) Influence of bioreactor scale and complex medium on probing control of glucose feeding in cultivations of recombinant strains of Escherichia coli. Biotechnol Bioeng 97(4):816–824. doi:10.1002/bit.21294

    Article  CAS  Google Scholar 

  67. Xue WJ, Fan DD (2011) Fed-batch production of human-like collagen with recombinant Escherichia coli using feed-up DO-transient control. Huaxue Gongcheng/Chem Eng (China) 39(10):6–10

    CAS  Google Scholar 

  68. Dochain D, Perrier M, Guay M (2011) Extremum seeking control and its application to process and reaction systems: a survey. Math Comput Simul 82(3):369–380. doi:10.1016/j.matcom.2010.10.022

    Article  Google Scholar 

  69. Cougnon P, Dochain D, Guay M, Perrier M (2011) On-line optimization of fedbatch bioreactors by adaptive extremum seeking control. J Process Control 21(10):1526–1532. doi:10.1016/j.jprocont.2011.05.004

    Article  CAS  Google Scholar 

  70. Dewasme L, Srinivasan B, Perrier M, Vande Wouwer A (2011) Extremum-seeking algorithm design for fed-batch cultures of microorganisms with overflow metabolism. J Process Control 21(7):1092–1104. doi:10.1016/j.jprocont.2011.05.002

    Article  CAS  Google Scholar 

  71. Hantelmann K, Kollecker M, Hüll D, Hitzmann B, Scheper T (2006) Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. J Biotechnol 121(3):410–417. doi:10.1016/j.jbiotec.2005.07.016

    Article  CAS  Google Scholar 

  72. Schenk J, Marison IW, von Stockar U (2007) A simple method to monitor and control methanol feeding of Pichia pastoris fermentations using mid-IR spectroscopy. J Biotechnol 128(2):344–353. doi:10.1016/j.jbiotec.2006.09.015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hitzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stanke, M., Hitzmann, B. (2012). Automatic Control of Bioprocesses. In: Mandenius, CF., Titchener-Hooker, N. (eds) Measurement, Monitoring, Modelling and Control of Bioprocesses. Advances in Biochemical Engineering/Biotechnology, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_167

Download citation

Publish with us

Policies and ethics