Skip to main content

Whole-Cell Bioreporters for the Detection of Bioavailable Metals

  • Chapter
  • First Online:
Whole Cell Sensing System II

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 118))

Abstract

Whole-cell bioreporters are living microorganisms that produce a specific, quantifiable output in response to target chemicals. Typically, whole-cell bioreporters combine a sensor element for the substance of interest and a reporter element coding for an easily detectable protein. The sensor element is responsible for recognizing the presence of an analyte. In the case of metal bioreporters, the sensor element consists of a DNA promoter region for a metal-binding transcription factor fused to a promoterless reporter gene that encodes a signal-producing protein. In this review, we provide an overview of specific whole-cell bioreporters for heavy metals. Because the sensing of metals by bioreporter microorganisms is usually based on heavy metal resistance/homeostasis mechanisms, the basis of these mechanisms will also be discussed. The goal here is not to present a comprehensive summary of individual metal-specific bioreporters that have been constructed, but rather to express views on the theory and applications of metal-specific bioreporters and identify some directions for future research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Dyk TK, Majarian WR, Konstantinov KB, Young RM, Dhurjati PS, LaRossa RA (1994) Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60:1414–1420

    CAS  Google Scholar 

  2. Belkin S, Smulski DR, Vollmer AC, Van Dyk TK, LaRossa RA (1996) Oxidative stress detection with Escherichia coli harboring a katG’::lux fusion. Appl Environ Microbiol 62:2252–2256

    CAS  Google Scholar 

  3. Bechor O, Smulski DR, Van Dyk TK, LaRossa RA, Belkin S (2002) Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA’::lux fusions. J Biotechnol 94:125–132

    CAS  Google Scholar 

  4. Ptitsyn LR, Horneck G, Komova O, Kozubek S, Krasavin EA, Bonev M, Rettberg P (1997) A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl Environ Microbiol 63:4377–4384

    CAS  Google Scholar 

  5. Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA (1997) Detection of DNA damage by use of Escherichia coli carrying recA’::lux, uvrA’::lux, or alkA’::lux reporter plasmids. Appl Environ Microbiol 63:2566–2571

    CAS  Google Scholar 

  6. King JMH, Digrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778

    CAS  Google Scholar 

  7. Köhler S, Belkin S, Schmid RD (2000) Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366:769–779

    Google Scholar 

  8. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337

    Google Scholar 

  9. Magrisso S, Erel Y, Belkin S (2008) Microbial reporters of metal bioavailability. Microb Biotechnol 1:320–330

    CAS  Google Scholar 

  10. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142

    CAS  Google Scholar 

  11. Viviani VR (2002) The origin, diversity, and structure function relationships of insect luciferases. Cell Mol Life Sci 59:1833

    CAS  Google Scholar 

  12. Lampinen J, Virta M, Karp M (1995) Comparison of Gram-positive and Gram-negative bacterial strains cloned with different types of luciferase genes in bioluminescence cytotoxicity tests. Environ Toxicol Water Qual 10:41

    CAS  Google Scholar 

  13. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509

    CAS  Google Scholar 

  14. Tamminen MV, Virta MPJ (2007) Quantification of eco toxicological tests based on bioluminescence using Polaroid film. Chemosphere 66:1329

    CAS  Google Scholar 

  15. Ivask A, Green T, Polyak B, Mor A, Kahru A, Virta M, Marks R (2007) Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens Bioelectron 22:1396–1402

    CAS  Google Scholar 

  16. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738

    CAS  Google Scholar 

  17. Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311

    CAS  Google Scholar 

  18. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    CAS  Google Scholar 

  19. van der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020

    CAS  Google Scholar 

  20. Silver S, Phung le T (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    CAS  Google Scholar 

  21. Frantz B, O’Halloran TV (1990) DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR. Biochemistry 29:4747–4751

    CAS  Google Scholar 

  22. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    CAS  Google Scholar 

  23. Tynecka Z, Gos Z, Zajac J (1981) Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus. J Bacteriol 147:305–312

    CAS  Google Scholar 

  24. Laddaga RA, Bessen R, Silver S (1985) Cadmium-resistant mutant of Bacillus subtilis 168 with reduced cadmium transport. J Bacteriol 162:1106–1110

    CAS  Google Scholar 

  25. Laddaga RA, Silver S (1985) Cadmium uptake in Escherichia coli K-12. J Bacteriol 162:1100–1105

    CAS  Google Scholar 

  26. Makui H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MF (2000) Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 35:1065–1078

    CAS  Google Scholar 

  27. Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 184:864–866

    CAS  Google Scholar 

  28. Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci U S A 86:3544–3548

    CAS  Google Scholar 

  29. Rensing C, Mitra B, Rosen BP (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A 94:14326–14331

    CAS  Google Scholar 

  30. Rensing C, Sun Y, Mitra B, Rosen BP (1998) Pb(II)-translocating P-type ATPases. J Biol Chem 273:32614–32617

    CAS  Google Scholar 

  31. Lee SW, Glickmann E, Cooksey DA (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67:1437–1444

    CAS  Google Scholar 

  32. Leedjärv A, Ivask A, Virta M (2008) Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J Bacteriol 190:2680–2689

    Google Scholar 

  33. Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31:893–902

    CAS  Google Scholar 

  34. Binet MR, Poole RK (2000) Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. FEBS Lett 473:67–70

    CAS  Google Scholar 

  35. Brocklehurst KR, Megit SJ, Morby AP (2003) Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Biochem Biophys Res Commun 308:234–239

    CAS  Google Scholar 

  36. Yoon KP, Misra TK, Silver S (1991) Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 173:7643–7649

    CAS  Google Scholar 

  37. Biran I, Babai R, Levcov K, Rishpon J, Ron EZ (2000) Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2:285–290

    CAS  Google Scholar 

  38. Riether K, Dollard M-A, Billard P (2001) Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Appl Microbiol Biotechnol 57:712–716

    CAS  Google Scholar 

  39. Ivask A, Virta M, Kahru A (2002) Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol Biochem 34:1439–1447

    CAS  Google Scholar 

  40. Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13:931–938

    CAS  Google Scholar 

  41. Shetty RS, Deo SK, Shah P, Sun Y, Rosen BP, Daunert S (2003) Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 376:11–17

    CAS  Google Scholar 

  42. Liao V, Chien M-T, Tseng Y-Y, Ou K-L (2006) Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environ Pollut 142:17–23

    CAS  Google Scholar 

  43. Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213

    CAS  Google Scholar 

  44. Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195

    CAS  Google Scholar 

  45. Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270:9217–9221

    CAS  Google Scholar 

  46. Stoyanov JV, Magnani D, Solioz M (2003) Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett 546:391–394

    CAS  Google Scholar 

  47. Stoyanov JV, Hobman JL, Brown NL (2001) CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–511

    CAS  Google Scholar 

  48. Stoyanov JV, Brown NL (2003) The Escherichia coli copper-responsive copA promoter is activated by gold. J Biol Chem 278:1407–1410

    CAS  Google Scholar 

  49. Shetty RS, Deo SK, Liu Y, Daunert S (2004) Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol Bioeng 88:664–670

    CAS  Google Scholar 

  50. Dameron CT, George GN, Arnold P, Santhanagopalan V, Winge DR (1993) Distinct metal binding configurations in ACE1. Biochemistry 32:7294–7301

    CAS  Google Scholar 

  51. Corbisier P, Thiry E, Diels L (1996) Bacterial biosensors for the toxicity assessment of solid wastes. Environ Toxicol Water Qual 11:171–177

    CAS  Google Scholar 

  52. Tom-Petersen A, Hosbond C, Nybroe O (2001) Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol Ecol 38:59–67

    CAS  Google Scholar 

  53. Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24:333–342

    CAS  Google Scholar 

  54. Leskinen P, Virta M, Karp M (2003) One-step measurement of firefly luciferase activity in yeast. Yeast 20:1109–1113

    CAS  Google Scholar 

  55. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    CAS  Google Scholar 

  56. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    CAS  Google Scholar 

  57. Ji G, Silver S (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694

    CAS  Google Scholar 

  58. Rosenstein R, Peschel A, Wieland B, Götz F (1992) Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol 174:3676–3683

    CAS  Google Scholar 

  59. Wu J, Rosen BP (1991) The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 5:1331

    CAS  Google Scholar 

  60. Corbisier P, Ji G, Nuyts G, Mergeay M, Silver S (1993) Luxab gene fusions with the arsenic and cadmium resistance operons of Staphylococcusaureus plasmid-Pi258. FEMS Microbiol Lett 110:231

    CAS  Google Scholar 

  61. Tauriainen S, Karp M, Chang W, Virta M (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461

    CAS  Google Scholar 

  62. Tauriainen S, Virta M, Chang W, Karp M (1999) Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Anal Biochem 272:191–198

    CAS  Google Scholar 

  63. Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, Van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743

    CAS  Google Scholar 

  64. Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Google Scholar 

  65. Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol 190:6996–7003

    CAS  Google Scholar 

  66. Cervantes C, Ohtake H, Chu L, Misra TK, Silver S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172:287–291

    CAS  Google Scholar 

  67. Alvarez AH, Moreno-Sánchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400

    CAS  Google Scholar 

  68. Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653

    CAS  Google Scholar 

  69. Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458

    CAS  Google Scholar 

  70. Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csoregi E, Johansson G, Mattiasson B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244

    CAS  Google Scholar 

  71. Navarro C, Wu LF, Mandrand-Berthelot MA (1993) The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol 9:1181–1191

    CAS  Google Scholar 

  72. Eitinger T, Suhr J, Moore L, Smith JA (2005) Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18:399–405

    CAS  Google Scholar 

  73. Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778

    CAS  Google Scholar 

  74. Rodrigue A, Effantin G, Mandrand-Berthelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187:2912–2916

    CAS  Google Scholar 

  75. Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054

    CAS  Google Scholar 

  76. Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van Der Lelie D (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182:1399–1409

    CAS  Google Scholar 

  77. Rensing C, Pribyl T, Nies DH (1997) New functions for the three subunits of the CzcCBA cation-proton antiporter. J Bacteriol 179:6871–6879

    CAS  Google Scholar 

  78. García-Domínguez M, Lopez-Maury L, Florencio FJ, Reyes JC (2000) A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 182:1507–1514

    Google Scholar 

  79. Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG, Rensing C (2001) NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183:2803–2807

    CAS  Google Scholar 

  80. Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel and its transfer to plants. Environ Pollut 113:19–26

    CAS  Google Scholar 

  81. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    CAS  Google Scholar 

  82. Ralston DM, O’Halloran TV (1990) Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc Natl Acad Sci U S A 87:3846–3850

    CAS  Google Scholar 

  83. Geiselhart L, Osgood M, Holmes DS (1991) Construction and evaluation of a self-luminescent biosensor. Ann N Y Acad Sci 646:53

    CAS  Google Scholar 

  84. Selifonova O, Burlage R, Barkay T (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090

    CAS  Google Scholar 

  85. Virta M, Lampinen J, Karp M (1995) A luminescence-based mercury biosensor. Anal Chem 67:667–669

    CAS  Google Scholar 

  86. Yu HR, Mukhopadhyay D, Misra TK (1994) Purification and characterization of a novel organometallic receptor protein regulating the expression of the broad-spectrum mercury-resistant operon of plasmid pDU1358. J Biol Chem 269:15697

    CAS  Google Scholar 

  87. Ivask A, Hakkila K, Virta M (2001) Detection of organomercurials with whole-cell bacterial sensors. Anal Chem 73:5168–5171

    CAS  Google Scholar 

  88. Escolar L, Pérez-Martín J, de Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229

    CAS  Google Scholar 

  89. Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772

    CAS  Google Scholar 

  90. Bagg A, Neilands JB (1987) Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471–5477

    CAS  Google Scholar 

  91. Hantke K (1987) Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K 12: fur not only affects iron metabolism. Mol Gen Genet 210:135–139

    CAS  Google Scholar 

  92. Durham KA, Porta D, Twiss MR, McKay RM, Bullerjahn GS (2002) Construction and initial characterization of a luminescent Synechococcus sp. PCC 7942 Fe-dependent bioreporter. FEMS Microbiol Lett 209:215–221

    CAS  Google Scholar 

  93. Porta D, Bullerjahn GS, Durham KA, Wilhelm SW, Twiss MR, McKay RML (2003) Physiological characterization of a Synechococcus sp. (Cyanophyceae) strain PCC7942 iron-dependent bioreporter. J Phycol 39:64–73

    CAS  Google Scholar 

  94. Hassler CS, Twiss MR, McKay RML, Bullerjahn GS (2006) Optimization of iron-dependent cyanobacterial (Synechococcus, Cyanophyceae) bioreporters to measure iron bioavailability. J Phycol 42:324–335

    CAS  Google Scholar 

  95. Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146:2435–2445

    CAS  Google Scholar 

  96. Mioni CE, Howard AM, Debruyn JM, Bright NG, Twiss MR, Applegate BM, Wilhelm SW (2003) Characterization and field trials of a bioluminescent bacterial reporter of iron bioavailability. Mar Chem 83:31–46

    CAS  Google Scholar 

  97. Hamlett NV, Landale EC, Davis BH, Summers AO (1992) Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. J Bacteriol 174:6377–6385

    CAS  Google Scholar 

  98. Pavel H, Forsman M, Shingler V (1994) An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols. J Bacteriol 176:7550–7557

    CAS  Google Scholar 

  99. Garmendia J, Devos D, Valencia A, de Lorenzo V (2001) A la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors. Mol Microbiol 42:47–59

    CAS  Google Scholar 

  100. Beggah S, Vogne C, Zenaro E, van der Meer JR (2008) Mutant HbpR transcription activator isolation for 2-chlorobiphenyl via green fluorescent protein-based flow cytometry and cell sorting. Microb Biotechnol 1:68–78

    CAS  Google Scholar 

  101. DeSilva TM, Veglia G, Porcelli F, Prantner AM, Opella SJ (2002) Selectivity in heavy metal- binding to peptides and proteins. Biopolymers 64:189–197

    CAS  Google Scholar 

  102. Khan S, Brocklehurst KR, Jones GW, Morby AP (2002) The functional analysis of directed amino-acid alterations in ZntR from Escherichia coli. Biochem Biophys Res Commun 299:438–445

    CAS  Google Scholar 

  103. Caguiat JJ, Watson AL, Summers AO (1999) Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. J Bacteriol 181:3462–3471

    CAS  Google Scholar 

  104. Hughes MN, Poole RK (1991) Metal speciation and microbial growth - the hard (and soft) facts. J Gen Microbiol 137:725–734

    CAS  Google Scholar 

  105. Rasmussen LD, Turner RR, Barkay T (1997) Cell-density-dependent sensitivity of a mer-lux bioassay. Appl Environ Microbiol 63:3291–3293

    CAS  Google Scholar 

  106. Fu YJ, Chen WL, Huang QY (2008) Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance. Appl Microbiol Biotechnol 79:363–370

    CAS  Google Scholar 

  107. DeLuca M (1978) Methods in enzymology, vol. 57: bioluminescence and chemiluminescence. Academic, New York

    Google Scholar 

  108. Collins YE, Stotzky G (1989) Factors affecting the toxicity of heavy metals to microbes. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. Wiley, New York

    Google Scholar 

  109. Gellert G, Stommel A, Trujillano AB (1999) Development of an optimal bacterial medium based on the growth inhibition assay with Vibrio fisheri. Chemosphere 39:467–476

    CAS  Google Scholar 

  110. Barkay T, Gillman M, Turner RR (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol 63:4267–4271

    CAS  Google Scholar 

  111. LaRossa RA, Smulski DR, VanDyk TK (1995) Interaction of lead nitrate and cadmium chloride with Escherichia coli K-12 and Salmonella typhimurium global regulatory mutants. J Ind Microbiol 14:252–258

    CAS  Google Scholar 

  112. Onishi H, Kobayashi T, Morita N, Baba M (1984) Effect of salt concentration on the cadmium tolerance of a moderately halophilic cadmium-tolerant Pseudomonas sp. Agric Biol Chem 48:2441–2448

    CAS  Google Scholar 

  113. Farrell RE, Germida JJ, Huang PM (1993) Effects of chemical speciation in growth media on the toxicity of mercury(II). Appl Environ Microbiol 59:1507–1514

    CAS  Google Scholar 

  114. Nybroe O, Brandt KK, Ibrahim YM, Tom-Petersen A, Holm PE (2008) Differential bioavailability of copper complexes to bioluminescent Pseudomonas fluorescens reporter strains. Environ Toxicol Chem 27:2246–2252

    CAS  Google Scholar 

  115. Golding GR, Sparling R, Kelly C (2008) Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Appl Environ Microbiol 74:667–675

    CAS  Google Scholar 

  116. Kelly CA, Rudd JWM, Holoka MH (2003) Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ Sci Technol 37:2941–2946

    CAS  Google Scholar 

  117. Wood KV, DeLuca M (1987) Photographic detection of luminescence in Escherichia coli containing the gene for firefly luciferase. Anal Biochem 161:501–507

    CAS  Google Scholar 

  118. Petänen T, Virta M, Karp M, Romantschuk M (2001) Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microb Ecol 41:360–368

    Google Scholar 

  119. Petänen T, Romantschuk M (2003) Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury. Chemosphere 50:409–413

    Google Scholar 

  120. Ivask A, Francois M, Kahru A, Dubourguier HC, Virta M, Douay F (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55:147–156

    CAS  Google Scholar 

  121. Beveridge TJ, Hughes MN, Lee H, Leung KT, Poole RK, Savvaidis I, Silver S, Trevors JT (1997) Metal-microbe interactions: contemporary approaches. Adv Microb Physiol 38:177–243

    CAS  Google Scholar 

  122. Hakkila K, Maksimow M, Karp M, Virta M (2002) Reporter genes lucFF, luxCDABE, gfp and dsred have different characteristics in whole-cell bacterial sensors. Anal Biochem 301:235–242

    CAS  Google Scholar 

  123. Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97:11984–11989

    CAS  Google Scholar 

  124. Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20:83

    CAS  Google Scholar 

  125. Kremers GJ, Goedhart J, van den Heuvel DJ, Gerritsen HC, Gadella TWJ (2007) Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 46:3775

    CAS  Google Scholar 

  126. Leth S, Maltoni S, Simkus R, Mattiasson B, Corbisier P, Klimant I, Wolfbeis OS, Csoregi E (2002) Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis 14:35–42

    CAS  Google Scholar 

  127. Hansen LJ, Sorensen SJ (2000) Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol Lett 193:123–127

    CAS  Google Scholar 

  128. Bondarenko O, Rõlova T, Kahru A, Ivask A (2008) Bioavailability of Cd, Zn and Hg in soil to nine recombinant luminescent metal sensor bacteria. Sensors 8:6899–6923

    CAS  Google Scholar 

  129. Harkins M, Porter AJ, Paton GI (2004) The role of host organism, transcriptional switches and reporter mechanisms in the performance of Hg-induced biosensors. J Appl Microbiol 97:1192–1200

    CAS  Google Scholar 

  130. Park JN, Sohn MJ, Oh DB, Kwon O, Rhee SK, Hur CG, Lee SY, Gellissen G, Kang HA (2007) Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems. Appl Environ Microbiol 73:5990–6000

    CAS  Google Scholar 

  131. Peltola P, Ivask A, Åström M, Virta M (2005) Lead and Cu in contaminated urban soils: extraction with chemical reagents and bioluminescent bacteria and yeast. Sci Tot Environ 350:194–203

    CAS  Google Scholar 

  132. Bahar B, Herting G, Wallinder IO, Hakkila K, Leygraf C, Virta M (2008) The interaction between concrete pavement and corrosion-induced copper runoff from buildings. Environ Monit Assess 140:175–189

    CAS  Google Scholar 

  133. Turpeinen R, Salminen J, Kairesalo T (2000) Mobility and bioavailability of lead in contaminated boreal forest soil. Environ Sci Technol 34:5152–5156

    CAS  Google Scholar 

  134. Rasmussen LD, Sorensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32:639–646

    CAS  Google Scholar 

  135. Fritze H, Perkiömäki J, Petänen T, Pennanen T, Romantschuk M, Karp M, Yrjälä K (2001) A microcosms study on the effects of Cd-containing wood ash on the coniferous humus fungal community and the Cd bioavailability. J Soils Sediments 1:146–150

    CAS  Google Scholar 

  136. Kahru A, Ivask A, Kasemets K, Põllumaa L, Kurvet I, Francois M, Dubourguier HC (2005) Biotests and Biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead and cadmium. Environ Toxicol Chem 24:2973–2982

    CAS  Google Scholar 

  137. Heitzer A, Applegate B, Kehrmeyer S, Pinkart H, Webb OF, Phelps TJ, White DC, Sayler GS (1998) Physiological considerations of environmental applications of lux reporter fusions. J Microbiol Methods 33:45–57

    CAS  Google Scholar 

  138. Sandberg J, Odnevall Wallinder I, Leygraf C, Virta M (2007) Release and chemical speciation of copper from anti-fouling paints with different active copper compounds in artificial seawater. Mater Corros 58:165–172

    CAS  Google Scholar 

  139. Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:229A–231A

    Google Scholar 

  140. Tauriainen SM, Virta MPJ, Karp MT (2000) Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria. Water Res 34:2661–2666

    CAS  Google Scholar 

  141. Peijnenburg WJGM, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Saf 56:63–77

    CAS  Google Scholar 

  142. Adriano DC (2001) Trace elements in terrestrial environments. In: Biogeochemistry, bioavailability, and risks of metals. Springer, Berlin Heidelberg New York

    Google Scholar 

  143. Ure AM, Davidson CM (2001) Chemical speciation in soils and related materials by selective chemical extraction. In: Ure AM, Davidson CM (eds) Chemical speciation in environment. Blackwell Science, Oxford

    Google Scholar 

  144. Ure AM, Davidson CM, Thomas RP (1995) Single and sequential schemes for trace metal speciation in soil and sediment. In: Quevauviller P, Maier Griepink B (eds) Quality assurance for environmental analysis. Elsevier Science, Amsterdam

    Google Scholar 

  145. Nachtegaal M, Marcus MA, Sonke JE, Vangronsveld J, Livi KJT, van der Lelie D, Sparks DL (2005) Effects of in situ remediation on the speciation and bioavailability of zinc in smelter-contaminated soil. Geochim Cosmochim Acta 69:4649–4664

    CAS  Google Scholar 

  146. Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensors – are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280

    CAS  Google Scholar 

  147. Baumann B, van der Meer JR (2007) Analysis of bioavailable arsenic in rice with whole cell living bioreporter bacteria. J Agric Food Chem 55:2115–2120

    CAS  Google Scholar 

  148. Roda A, Pasini P, Mirasoli M, Guardigli M, Russo C, Musiani M, Baraldini M (2001) Sensitive determination of urinary mercury(II) by a bioluminescent transgenic bacteria-based biosensor. Anal Lett 34:29–41

    CAS  Google Scholar 

  149. Pepi M, Reniero D, Baldi B, Barbieri P (2006) A comparison of mer::lux whole cell biosensors and moss, a bioindicator for estimating mercury pollution. Water Air Soil Pollut 173:163–175

    CAS  Google Scholar 

  150. Harms H, Rime J, Leupin O, Hug SJ, van der Meer JR (2005) Influence of groundwater composition on arsenic detection by bacterial biosensors. Mikrochim Acta 151:217–222

    CAS  Google Scholar 

  151. Liao VH, Ou KL (2005) Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ Toxicol Chem 24:1624–1631

    CAS  Google Scholar 

  152. Trang PT, Berg M, Viet PH, Van Mui N, van der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:7625–7630

    CAS  Google Scholar 

  153. McKay RML, Porta D, Bullerjahn GS, Al-Rshaidat MMD, Klimowicz JA, Sterner RW, Smutka TM, Brown ET, Sherrell RM (2005) Bioavailable iron in oligotrophic Lake Superior assessed using biological reporters. J Plankton Res 27:1033–1044

    CAS  Google Scholar 

  154. Hassler CS, Twiss MR (2006) Bioavailability of iron sensed by a phytoplanktonic Fe-bioreporter. Environ Sci Technol 40:2544–2551

    CAS  Google Scholar 

  155. Boyanapalli R, Bullerjahn GS, Pohl C, Croot PL, Boyd PW, McKay RM (2007) Luminescent whole-cell cyanobacterial bioreporter for measuring Fe availability in diverse marine environments. Appl Environ Microbiol 73:1019–1024

    CAS  Google Scholar 

  156. Rahman MM, Mukherjee D, Sengupta MK, Chowdhury UK, Lodh D, Chanda CR, Roy S, Selim M, Quamruzzaman Q, Milton AH, Shahidullah SM, Rahman MT, Chakraborti D (2002) Effectiveness and reliability of arsenic field testing kits: are the million dollar screening projects effective or not? Environ Sci Technol 36:5385–5394

    CAS  Google Scholar 

  157. Petänen T, Lyytikainen M, Lappalainen J, Romantschuk M, Kukkonen JVK (2003) Assessing sediment toxicity and arsenite concentration with bacterial and traditional methods. Environ Pollut 122:407–415

    Google Scholar 

  158. Turpeinen R, Virta M, Häggblom MM (2003) Analysis of arsenic bioavailability in contaminated soils. Environ Toxicol Chem 22:1–6

    CAS  Google Scholar 

  159. Brandt KK, Petersen A, Holm PE, Nybroe O (2006) Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microbiol Ecol 56:281–291

    CAS  Google Scholar 

  160. Brandt KK, Holm PE, Nybroe O (2006) Bioavailability and toxicity of particle-associated copper as determined by two bioluminescent Pseudomonas fluorescens biosensor strains. Environ Toxicol Chem 25:1738–1741

    CAS  Google Scholar 

  161. Bontidean I, Mortari A, Leth S, Brown NL, Karlson U, Larsen MM, Vangronsveld J, Corbisier P, Csoregi E (2004) Biosensors for detection of mercury in contaminated soils. Environ Pollut 131: 255–262

    CAS  Google Scholar 

  162. Tarradellas J, Bitton G, Rossel D (1997) Soil ecotoxicology. Lewis, Florida

    Google Scholar 

  163. Di Toro DM, Mahony JD, Hanson DJ, Scott KJ, Hicks MB, Redmond MS (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem 9:1489–1504

    Google Scholar 

  164. Bernaus A, Gaona X, Ivask A, Kahru A, Valiente M (2005) Analysis of sorption and bioavailability of different species of mercury on model soil components using XAS techniques and sensor bacteria. Anal Bioanal Chem 382:1541–1548

    CAS  Google Scholar 

  165. Huang PM, Bollag J-M, Senesi N (2002) Interactions between soil particles and microorganisms. Wiley, New York

    Google Scholar 

  166. Everhart JL, McNear D Jr, Peltier E, van der Lelie D, Chaney RL, Sparks DL (2006) Assessing nickel bioavailability in smelter-contaminated soils. Sci Total Environ 367:732–744

    CAS  Google Scholar 

  167. Geebelen W, Adriano DC, van der Lelie D, Mench M, Carleer R, Clijsters H, Vangronsveld J (2003) Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil 249:217–228

    CAS  Google Scholar 

  168. Heijerick DG, Janssen CR, Karlèn C, Wallinder IO, Leygraf C (2002) Bioavailability of zinc in runoff water from roofing materials. Chemosphere 47:1073–1080

    CAS  Google Scholar 

  169. Karlen C, Wallinder IO, Heijerick D, Leygraf C (2002) Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper. Environ Pollut 120:691–700

    CAS  Google Scholar 

  170. Long GL, Winefordner JD (1983) Limit of detection: a closer look at the IUPAC definition. Anal Chem 55:712A–724A

    CAS  Google Scholar 

Download references

Acknowledgments

AH is funded by EnSTe graduate school. MV has been financially supported by Academy of Finland and the Maj and Tor Nessling Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Virta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hynninen, A., Virta, M. (2009). Whole-Cell Bioreporters for the Detection of Bioavailable Metals. In: Belkin, S., Gu, M. (eds) Whole Cell Sensing System II. Advances in Biochemical Engineering / Biotechnology, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_9

Download citation

Publish with us

Policies and ethics