Skip to main content

Cyanobacterial Bioreporters as Sensors of Nutrient Availability

  • Chapter
  • First Online:
Whole Cell Sensing System II

Abstract

Due to their ubiquity in aquatic environments and their contribution to total biomass, especially in oligotrophic systems, cyanobacteria can be viewed as a proxy for primary productivity in both marine and fresh waters. In this chapter we describe the development and use of picocyanobacterial bioreporters to measure the bioavailability of nutrients that may constrain total photosynthesis in both lacustrine and marine systems. Issues pertaining to bioreporter construction, performance and field applications are discussed. Specifically, luminescent Synechococcus spp. and Synechocystis spp. bioreporters are described that allow the bioavailability of phosphorus, nitrogen and iron to be accurately measured in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitton BA, Potts M (2000) Introduction to the cyanobacteria. In: Witton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht

    Google Scholar 

  2. Callieri CJS, Stockner JS (2002) Freshwater autotrophic picoplankton: a review. J Limnol 61:1–14

    Google Scholar 

  3. Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light harvesting strategies. Trends Microbiol 10:134–142

    CAS  Google Scholar 

  4. Goericke R, Welschmeyer NA (1993) The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep Sea Res 40:2283–2294

    Google Scholar 

  5. Liu H, Nolla HA, Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol 12:39–47

    Google Scholar 

  6. Veldhuis MJW, Kraay GW, Van Bleijswijk JDL, Baars MA (1997) Seasonal and spatial variation in phytoplankton biomass, productivity and growth in the northwestern Indian Ocean: the southwest and northeast monsoon, 1992–1993. Deep Sea Res 44:425–449

    CAS  Google Scholar 

  7. Fahnenstiel GL, Carrick HJ (1992) Phototrophic picoplankton in Lakes Huron and Michigan: abundance, distribution, composition, and contribution to biomass and production. Can J Fish Aquat Sci 49:379–388

    Google Scholar 

  8. Ivanikova NV, Popels L, McKay RML, Bullerjahn GS (2007) Lake Superior supports unique clusters of cyanobacterial picoplankton. Appl Environ Microbiol 73:4055–4066

    CAS  Google Scholar 

  9. McKay RML, Porta D, Bullerjahn GS, Sterner RW, Brown ET, Sherrell RM (2005) Bioavailable Fe in oligotrophic Lake Superior assessed using biological reporters. J Plankton Res 27:1033–1044

    CAS  Google Scholar 

  10. Silvert W (1996) Size-aggregation in models of aquatic ecosystems. Sci Total Environ 183:107–114

    CAS  Google Scholar 

  11. Ware DM, Thompson RE (2005) Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308:1280–1284

    CAS  Google Scholar 

  12. Bachmann T (2003) Transforming cyanobacteria into bioreporters of biological relevance. Trends Biotechnol 21:247–249

    CAS  Google Scholar 

  13. Belkin S (2003) Microbial whole cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    CAS  Google Scholar 

  14. Andersson CR, Tsinoremas NF, Shelton J, Lebedeva NV, Yarrow J, Min H, Golden SS (2000) Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol 305:527–42

    CAS  Google Scholar 

  15. Mackey SR, Ditty JL, Clerico EM, Golden SS (2007) Detection of rhythmic bioluminescence from luciferase reporters in cyanobacteria. In: Rosato E (ed) Circadian rhythms: methods and protocols. Humana, Totowa NJ

    Google Scholar 

  16. Kunert A, Hagemann M, Erdmann E (2000) Construction of promoter probe vectors for Syenechocystis sp. PCC 6803 using the light-emitting reporter systems Gfp and LuxAB. J Microbiol Methods 41:185–194

    CAS  Google Scholar 

  17. Boyanapalli R, Bullerjahn GS, Pohl C, Croot PL, Boyd PW, McKay RML (2007) A luminescent whole-cell cyanobacterial bioreporter for measuring Fe availability in diverse marine environments. Appl Environ Microbiol 73:1019–1024

    CAS  Google Scholar 

  18. Durham KA, Porta D, Twiss M, McKay RML, Bullerjahn GS (2002) Construction and characterization of a luminescent Synechococcus sp. PCC7942 Fe-dependent bioreporter. FEMS Microbiol Lett 209:215–221

    CAS  Google Scholar 

  19. Durham KA, Porta D, McKay RML, Bullerjahn GS (2003) Expression of the iron-responsive irpA gene from the cyanobacterium Synechococcus sp. strain PCC 7942. Arch Microbiol 179:131–134

    CAS  Google Scholar 

  20. Gillor O, Hadas O, Post AF, Belkin S (2002) Phosphorus bioavailability monitoring by a bioluminescent sensor strain. J Phycol 38:107–115

    Google Scholar 

  21. Gillor O, Harush A, Hadas O, Post AF, Belkin S (2003) A Synechococcus PglnA::luxAB fusion for estimation of nitrogen bioavailability to freshwater cyanobacteria. Appl Environ Microbiol 69:1465–1474

    CAS  Google Scholar 

  22. Ivanikova NV, McKay RML, Bullerjahn GS (2005) Construction and characterization of a freshwater cyanobacterial bioreporter capable of assessing nitrate assimilatory capacity in freshwaters. Limnol Oceanogr Methods 3:86–93

    CAS  Google Scholar 

  23. Mbeunkui F, Richaud C, Etienne AL, Schmid RD, Bachmann TT (2002) Bioavailable nitrate detection in water by an immobilized luminescent cyanobacterial reporter strain. Appl Microbiol Biotechnol 60:306–312

    CAS  Google Scholar 

  24. Schreiter PP, Gillor O, Post AF, Belkin S, Schmid RD, Bachmann TT (2001) Monitoring of phosphorus bioavailability in water by an immobilized luminescent cyanobacterial reporter strain. Biosens Bioelectron 1:811–818

    Google Scholar 

  25. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738

    CAS  Google Scholar 

  26. van der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020

    Google Scholar 

  27. Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensors-are they ready for environmental application? Appl Microbiol Biotechnol 7:1–8

    Google Scholar 

  28. Golden JW, Yoon H-S (2003) Heterocyst development in Anabaena. Curr Opinion Microbiol 6:557–563

    CAS  Google Scholar 

  29. Tolonen AC, Liszt GB, Hess WR (2006) Genetic manipulation of Prochlorococcus strain MIT9313: green fluorescent protein expression from an RSF1010 plasmid and Tn5 transposition. Appl Environ Microbiol 72:7607–7613

    CAS  Google Scholar 

  30. Kitayama Y, Kondo T, Nakahira Y, Nishimura H, Ohmiya Y, Oyama T (2004) An in vivo dual reporter sysem of cyanobacteria using two railroad-worm luciferases with different color emissions. Plant Cell Physiol 45:109–113

    CAS  Google Scholar 

  31. Boyd TJ, Osburn CL (2004) Changes in CDOM fluorescence from allocthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Mar Chem 89:189–210

    CAS  Google Scholar 

  32. Coble PG, Green SA, Blough NV, Gagosian RB (1990) Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348:432–434

    CAS  Google Scholar 

  33. De Souza Sierra MM, Donard OFX, Lamotte M, Belin C, Ewald M (1994) Fluorescence spectroscopy of coastal and marine waters. Mar Chem 47:127–144

    Google Scholar 

  34. Kowalczuk P, Stoń-Egiert J, Cooper WJ, Whitehead RF, Durako MJ (2005) Characterization of chromophoric dissolved organic matter in the Baltic Sea by excitation emission matrix fluorescence spectroscopy. Mar Chem 96:273–292

    CAS  Google Scholar 

  35. Hassler CS, Havens SM, Bullerjahn GS, McKay RML, Twiss MR (2009) An evaluation of iron bioavailability and speciation in western Lake Superior with the use of combined physical, chemical and biological assessment. Limnol Oceanogr 54:987–1001

    Google Scholar 

  36. Hakkila K, Maksimow M, Karp M, Virta M (2002) Reporter genes lucFF, luxCDABE, gfp and dsred have different characteristics in whole-cell bacterial sensors. Anal Biochem 301:235–242

    CAS  Google Scholar 

  37. Liu Y, Golden SS, Kondo T, Ishiura M, Johnson CH (1995) Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J Bacteriol 177:2080–2086

    CAS  Google Scholar 

  38. Porta D, Bullerjahn GS, Durham KA, Wilhelm SW, Twiss MR, McKay RML (2003) Physiological characterization of a Synechococcus sp. (Cyanophyceae) strain PCC7942 iron-dependent bioreporter. J Phycol 39:64–73

    CAS  Google Scholar 

  39. Shao CY, Howe CJ, Porter AJR, Glover LA (2002) Novel cyanobacterial biosensor for detection of herbicides. Appl Environ Microbiol 68:5026–5033

    CAS  Google Scholar 

  40. Hastings JW (1978) Bacterial bioluminescence: an overview. Methods Enzymol 57:125–135

    CAS  Google Scholar 

  41. Hassler CS, Twiss MR, McKay RML, Bullerjahn GS (2006) Optimization of a cyanobacterial (Synechococcus sp. PCC 7942) bioreporter to measure bioavailable iron. J Phycol 42:324–335

    CAS  Google Scholar 

  42. Nodop A, Pietsch D, Höcker R, Becker A, Pistorius EK, Forchhammer K, Michel K-P (2008) Transcript profiling reveals new insights into the acclimation of the mesophilic fresh-water cyanobacterium Synechococcus elongatus PCC 7942 to iron starvation. Plant Physiol 147:747–763

    CAS  Google Scholar 

  43. Yousef N, Pistorius EK, Michel KP (2003) Comparative analysis of idiA and isiA transcription under iron starvation and oxidative stress in Synechococcus elongatus PCC 7942 wild type and selected mutants. Arch Microbiol 180:471–483

    CAS  Google Scholar 

  44. Hassler CS, Twiss MR, Simon DF, Wilkinson KJ (2008) Porous underwater chamber (PUC) for in-situ determination of nutrient and pollutant bioavailability to microorganisms. Limnol Oceanogr Methods 6:277–287

    CAS  Google Scholar 

  45. Ivanikova NV, McKay RML, Bullerjahn GS, Sterner RW (2007) Nitrate utilization in Lake Superior is impaired by low nutrient (P, Fe) availability and seasonal light limitation – a cyanobacterial bioreporter study. J Phycol 43:475–484

    Google Scholar 

  46. Porta D, Bullerjahn GS, Twiss MR, Wilhelm SW, Poorvin L, McKay RML (2005) Iron bioavailability in Lake Erie (Laurentian Great Lakes) measured by means of a cyanobacterial bioreporter. J. Great Lakes Res 31(Suppl 2):180–194

    CAS  Google Scholar 

  47. Sakamoto T, Shen G, Higashi S, Murata N, Bryant DA (1997) Alteration of low-temperature susceptibility of the cyanobacterium Synechococcus sp. PCC 7002 by genetic manipulation of membrane lipid unsaturation. Arch Microbiol 169:20–28

    Google Scholar 

  48. Palenik B, Brahamsha B, Larimer FW, Land M et al (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042

    CAS  Google Scholar 

  49. Su Z, Dam P, Chen X, Olman V, Jiang T, Palenik B, Xu Y (2003) Computational inference of regulatory pathways in microbes: an application to phosphorus assimilation pathways in Synechococcus sp. WH8102. Genome Inform 14:3–13

    CAS  Google Scholar 

  50. Urbach E, Scanlan DJ, Distel DL, Waterbury JB, Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J Mol Evol 46:188–201

    CAS  Google Scholar 

  51. Brahamsha B (1996) A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl Environ Microbiol 62:1747–1751

    CAS  Google Scholar 

  52. Larsen RA, Wilson MM, Guss AM, Metcalf WW (2002) Genetic analysis of pigment biosynthesis in Xanthomonas autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 178:193–201

    CAS  Google Scholar 

  53. McCarren J, Brahamsha B (2005) Transposon mutagenesis in a marine Synechococcus strain: isolation of swimming motility mutants. J Bacteriol 187:4457–4462

    CAS  Google Scholar 

  54. Palenik B, Ren Q, Dupont CL, Myers GS et al (2006) Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. Proc Nat Acad Sci USA 103:13555–13559

    CAS  Google Scholar 

  55. Boyd PW, Jickells T, Law CS, Blain S et al (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617

    CAS  Google Scholar 

  56. Hutchins DA, Di Tullio GR, Zhang Y, Bruland KW (1998) An iron limitation mosaic in the California upwelling regime. Limnol Oceanogr 43:1037–1054

    CAS  Google Scholar 

  57. Jickells TD, An ZS, Andersen KK, Baker AR et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    CAS  Google Scholar 

  58. Hutchins DA, Witter AE, Butler A, Luther GW III (1999) Competition among marine phytoplankton for different chelated iron species. Nature 400:858–861

    CAS  Google Scholar 

  59. Carpenter SR (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680

    Google Scholar 

  60. Geiß U, Vinnemeier J, Kunert A, Lindner I, Gemmer B, Lorenz M, Hagemann M, Schoor A (2001) Detection of the isiA gene across cyanobacterial strains: Potential for probing iron deficiency. Appl Environ Microbiol 67:5247–5253

    Google Scholar 

  61. Geiß U, Selig U, Schumann R, Steinbruch R, Bastrop B, Hagemann M, Schoor A (2004) Investigations on cyanobacterial diversity in a shallow estuary (Southern Baltic Sea) including genes relevant to salinity resistance and iron starvation acclimation. Environ Microbiol 6:377–387

    Google Scholar 

  62. McKay RML, Wilhelm SW, Hall J, Hutchins DA, Al-Rshaidat MMD, Mioni CE, Pickmere S, Porta D, Boyd PW (2005) The impact of phytoplankton on the biogeochemical cycling of iron in subantarctic waters southeast of New Zealand during FeCycle. Global Biogeochem Cycles 19:GB4S24. doi:10.1029/2005GB002482

    Google Scholar 

  63. Xia L, Yakunin AF, McKay RML (2004) The Fe-responsive accumulation of redox proteins ferredoxin and flavodoxin from a marine cryptomonad. Eur J Phycol 39:73–82

    Google Scholar 

  64. Webb EA, Moffett JW, Waterbury JB (2001) Iron stress in open-ocean cyanobacteria (Synechococcus, Trichodesmium, and Crocosphaera spp.): identification of the IdiA protein. Appl Environ Microbiol 67:5444–5452

    CAS  Google Scholar 

  65. Behrenfeld MJ, Sherrell WK, RM CFP, Strutton P, McPhaden M, Shea DM (2006) Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature 442:1025–1028

    CAS  Google Scholar 

  66. Hassler CS, Twiss MR (2006) Bioavailability of iron senesed by a phytoplanktonic Fe-bioreporter. Environ Sci Technol 40:2544–2551

    CAS  Google Scholar 

  67. Michel KP, Pistorius EK (2004) Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA. Physiol Plant 120:36–50

    CAS  Google Scholar 

  68. Singler HR, Villareal TA (2005) Nitrogen inputs into the euphotic zone by vertically migrating Rhizosolenia mats. J Plankton Res 27:545–556

    CAS  Google Scholar 

  69. Villareal TA, McKay RML, Al-Rshaidat MMD, Boyanapalli R, Sherrell RM (2007) Compositional and fluorescence characteristics of the giant diatom Ethmodiscus along a 3000 km transect (28°N) in the central North Pacific gyre. Deep-Sea Res I 54:1273–1288

    Google Scholar 

  70. Björkman KM, Karl DM (2003) Bioavailability of dissolved organic phosphorus in the euphotic zone at Station ALOHA, North Pacific Subtropical Gyre. Limnol Oceanogr 48:1049–1057

    Google Scholar 

  71. Karl DM, Tien G (1992) MAGIC: a sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnol Oceanogr 37:105–116

    CAS  Google Scholar 

  72. Johnson KS, Boyle E, Bruland K, Coale K et al (2007) Developing standard for dissolved iron in seawater. EOS 88:131–132

    Google Scholar 

  73. Martin JH, Gordon RM (1988) Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-Sea Res Part A 35:177–196

    CAS  Google Scholar 

  74. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, Martinez A, Sullivan MB, Edwards R, Rodriguez Brito B, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    CAS  Google Scholar 

  75. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740

    CAS  Google Scholar 

  76. Geider RJ, La Roche J (1994) The role of iron in phytoplankton photosynthesis, and the potential iron-limitation of primary productivity in the sea. Photosynthesis Res 39:275–301

    CAS  Google Scholar 

  77. de Baar HJW, de Jong JTM (2001) Distributions, sources and sinks of iron in seawater. In: Turner DR, Hunter KA (eds) The biogeochemistry of iron in seawater. Wiley, Chichester

    Google Scholar 

  78. Brown MT, Landing WM, Measures CI (2005) Dissolved and particulate Fe in the western and central North Pacific: Results from the 2002 IOC cruise. Geochem Geophys Geosyst 6(10). doi:10.1029/2004GC000893

    Google Scholar 

  79. Karl DM (2000) Phosphorus, the staff of life. Nature 406:31–32

    CAS  Google Scholar 

  80. Benitez-Nelson CR (2000) The biogeochemical cycling of phosphorus in marine systems. Earth Sci Rev 51:109–135

    CAS  Google Scholar 

  81. Karl DM, Björkman KM, Dore JE, Fujieki L, Hebel T, Houlihan T, Letelier RM, Tupas LM (1999) Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep-Sea Res II 48:1529–1566

    Google Scholar 

  82. Karl DM, Yanagi K (1997) Partial characterization of the dissolved organic phosphorus pool in the oligotrophic North Pacific Ocean. Limnol Oceanogr 42:1398–1405

    CAS  Google Scholar 

  83. Wu J, Sunda W, Boyle EA, Karl DM (2000) Phosphate depletion in the Western North Atlantic Ocean. Science 289:759–762

    CAS  Google Scholar 

  84. Clark LL, Ingall ED, Benner R (1998) Marine phosphorus is selectively remineralized. Nature 393:426–428

    CAS  Google Scholar 

  85. Engblom SO (1998) The phosphate sensor. Biosens Bioelectron 13:981–994

    CAS  Google Scholar 

  86. Boström B, Perrson G, Broberg B (1988) Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170:133–155

    Google Scholar 

  87. Hoppe HG (2003) Phosphatase activity in the sea. Hydrobiologia 187:187–200

    Google Scholar 

  88. Ammerman JW, Azam F (1985) Bacterial 5’-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science 227:1338–1340

    CAS  Google Scholar 

  89. Dyhrman ST, Webb EA, Anderson DM, Moffett JW, Waterbury JB (2002) Cell-specific detection of phosphorus stress in Trichodesmium from the Western North Atlantic. Limnol Oceanogr 47:1832–1836

    Google Scholar 

  90. Lomas MW, Swain A, Shelton R, Ammerman JW (2004) Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton. Limnol Oceanogr 49:2303–2310

    Google Scholar 

  91. Fuller NJ, West NJ, Marie D, Yallop M, Rivlin T, Post AF, Scanlan DJ (2005) Dynamics of community structure and phosphate status of picocyanobacterial populations in the Gulf of Aqaba, Red Sea. Limnol Oceanogr 50:363–375

    CAS  Google Scholar 

  92. Scanlan DJ, Wilson WH (1999) Application of molecular techniques to addressing the role of P as a key effector in marine ecosystems. Hydrobiologia 401:149–175

    CAS  Google Scholar 

  93. Scanlan DJ, Silman NJ, Donald KM, Wilson WH, Carr NG, Joint I, Mann NH (1997) An immunological approach to detect phosphate stress in populations and single cells of photosynthetic picoplankton. Appl Environ Microbiol 63:2411–2420

    CAS  Google Scholar 

  94. Dyhrman ST, Haley ST (2006) Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl Environ Microbiol 72:1452–1458

    CAS  Google Scholar 

  95. Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439:68–71

    CAS  Google Scholar 

  96. Ilikchyan, I, McKay RML, Zehr JP, Dyhrman ST, Bullerjahn GS (2009) Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria. Environ Microbiol 11:1314–1324

    Google Scholar 

  97. Aichi M, Takatani N, Omata T (2001) Role of NtcB in activation of nitrate assimilation genes in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183:5840–5847

    CAS  Google Scholar 

  98. Frias JE, Flores E, Herrero A (2000) Activation of the Anabaena nir operon promoter requires both NtcA (CAP family) and NtcB (LysR family) transcription factors. Mol Microbiol 38:613–625

    CAS  Google Scholar 

  99. Mortonson JA, Brooks AS (1980) Occurrence of a deep nitrite maximum in Lake Michigan. Can J Fish Aquat Sci 37:1025–1027

    CAS  Google Scholar 

  100. Wilhelm SW, DeBruyn JM, Gillor O, Twiss MR, Livingston K, Bourbonniere RA, Pickell LD, Trick CG, Dean AL, McKay RML (2003) Effect of phosphorus amendments on present day plankton communities in pelagic Lake Erie. Aquat Microb Ecol 32:275–285

    Google Scholar 

  101. Sterner RW, Anagnostou E, Brovold S, Bullerjahn GS, Finlay J, Kumar S, McKay RML, Sherrell RM (2007) Increasing stoichiometric imbalance in North America’s largest lake: Nitrification in Lake Superior. Geophys Res Letts 34:L10406. doi:10.1029/2006GL028861

    Google Scholar 

  102. Koksharova OA, Wolk CP (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58:123–137

    CAS  Google Scholar 

  103. Wolk CP, Cai Y, Panoff J-M (1991) Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci USA 88:5355–5359

    CAS  Google Scholar 

  104. Maeda S-I, Kawaguchi Y, Ohe T-A, Omata T (1998) cis-acting sequences required for NtcB-dependent, nitrite-responsive positive regulation of the nitrate assimilation operon in the cyanobacterium Synechococcus sp. Strain PCC 7942. J Bacteriol 180:4080–4088

    CAS  Google Scholar 

  105. Grossman AR (2005) Paths toward algal genomics. Plant Physiol 137:410–427

    CAS  Google Scholar 

  106. Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic era. J Phycol 41:1077–1093

    Google Scholar 

  107. Grossman AR, Harris EE, Hauser C, Lefebvre PA et al (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2:1137–1150

    CAS  Google Scholar 

  108. Ferrante P, Catalanotti C, Bonente G, Giuliano G (2008) An optimized, chemically regulated gene expression system for Chlamydomonas. PLoS ONE 3(9):e3200. doi:10.1371/journal.pone.0003200

    Google Scholar 

  109. Léon-Baňares R, Gonzáles-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52

    Google Scholar 

  110. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Op Biotechnol 19:430–436

    CAS  Google Scholar 

  111. Redinbo MR, Yeates TO, Merchant S (1994) Plastocyanin: structural and functional analysis. J Bioenerg Biomembr 26:49–66

    CAS  Google Scholar 

  112. Fuhrmann M, Hausherr A, Ferbitz L, Schodl T et al (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55:869–881

    CAS  Google Scholar 

  113. Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, Manfredonia A, Falciatore A, Bowler C (2007) Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406:23–35

    CAS  Google Scholar 

  114. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    CAS  Google Scholar 

  115. Bowler C, Allen AE, Badger JH, Grimwood J et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    CAS  Google Scholar 

  116. Falciatore A, Ribera d’Alcalà M, Croot P, Bowler C (2000) Perception of environmental signals by a marine diatom. Science 288:2363–2366

    CAS  Google Scholar 

  117. Poulsen N, Kröger N (2005) A new molecular tool for transgenic diatoms. Control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J 272:3413–3423

    CAS  Google Scholar 

  118. Poulsen N, Chesley PM, Kröger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 42:1059–1065

    Google Scholar 

  119. Li J, Xue L, Yan H, Liu H, Liang J (2008) Inducible EGFP expression under the control of the nitrate reductase gene promoter in transgenic Dunaliella salina. J Appl Phycol 20:137–145

    CAS  Google Scholar 

  120. Kröger N (2007) Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Curr Op Chem Biol 11:662–669

    Google Scholar 

  121. Kröger N, Poulsen N (2008) Diatoms – from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107

    Google Scholar 

  122. Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER (2008) Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria. Appl Environ Microbiol 74:4530–4534

    CAS  Google Scholar 

Download references

Acknowledgements

Cyanobacterial bioreporter development and characterization described in this review was based upon work supported by the National Science Foundation (NSF) under grants OCE-9911592, 0327738 and 0727644 (RMLM and GSB), OCE-0095404 (RMLM) and MCB-9634049 (GSB). The authors recognize the contributions of K. Brinkman, P. Croot, K. Durham, O. Gillor, C. Hassler, N. Ivanikova, C. Pohl, D. Porta, R. Sherrell, R. Sterner, M. Twiss, and S. Wilhelm in furthering our efforts to develop and use nutrient-responsive cyanobacterial bioreporters. We also recognize M. Al-Rshaidat, H. Singler, and T. Villareal for their contributions to measuring variable fluorescence of buoyant diatoms described in the case study presented in Sect. 3.1.1. The authors are grateful to the captains and crews of the R/V Blue Heron, R/V New Horizon and the CCGS Limnos for their assistance in collection of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Michael L. McKay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Bullerjahn, G.S., Boyanapalli, R., Rozmarynowycz, M.J., McKay, R.M.L. (2010). Cyanobacterial Bioreporters as Sensors of Nutrient Availability. In: Belkin, S., Gu, M. (eds) Whole Cell Sensing System II. Advances in Biochemical Engineering / Biotechnology, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_23

Download citation

Publish with us

Policies and ethics