Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 185))

  • 554 Accesses

Abstract

Despite the importance of peatlands, the algal ecology of peatlands and the periphyton communities which are abundant in these habitats are relatively understudied. We performed an in situ manipulation of pH in an intermediate fen in northern lower Michigan in order to examine how hydrogen ion concentrations structure an epiphytic algal community. Levels of pH were manipulated in enclosures from the control level (pH=5) to an acid treatment (pH=4) by adding H2SO4 and a neutral treatment (pH=7) by adding NaOH. Algal communities growing on sections of Chamaedaphne calyculata (L.) Moench stems were examined after 22 days of colonization. Chlorophyll a concentration was significantly greater only in the acid treatment (∼5.5 mg m−2) relative to the control (∼3.5 mg m−2). Taxa richness was lower in the acid treatment. The algal assemblages were dominated by filamentous green algae and a filamentous taxon, Mougeotia spp., was significantly greater in the acid treatment relative to the control. Increases in Zygnemataceae and Oedogonium spp. most likely account for the higher chlorophyll a in the acid treatment. Most treatment differences were detected in the neutral treatment, including increased abundances of Closterium polystichum Nygaard, Cosmarium sp., Peridinium inconspicuum Lemmermann, and Synedra acus Kütz. Unexpectedly, there was no strong response of the desmid community. These data can be informative in the development of algal monitoring programs in peatlands when assessment of acidification is desired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Public Health Association, 1998. Standard Methods for the Examination of Water and Wastewater. Water Environment Federation. Arlington, VA: 1183.

    Google Scholar 

  • Barmuta, L. A., S. D. Cooper, S. K. Hamilton, K. W. Kratz & J. M. Melack, 1990. Responses of zooplankton and zoobenthos to experimental acidification in a high-elevation lake (Sierra Nevada, California, USA). Freshwater Biology 23: 571–586.

    Article  Google Scholar 

  • Bellemakers, M. J. S. & H. van Dam, 1992. Improvement of breeding success of the moor frog (Rana arvalis) by liming of acid moorland pools and the consequences of liming for water chemistry and diatoms. Environmental Pollution 78: 165–171.

    Article  PubMed  CAS  Google Scholar 

  • Brook, A. J., 1981. The Biology of Desmids. University of California Press, Berkeley pp 276.

    Google Scholar 

  • Charman, D., 2002. Peatlands and Environmental Change. John Wiley, Sons, Inc, New York, NY pp 301.

    Google Scholar 

  • Coesel, P. F. M., 1981. Classification of desmid assemblies in a Dutch broads area. Archiv für Hydrobiologie 91: 56–81.

    Google Scholar 

  • Coesel, P. F. M., 1982. Structural characteristics and adaptations of desmid communities. Journal of Ecology 70: 163–177.

    Article  Google Scholar 

  • Crum, H., 1988. A Focus on Peatlands and Peat Mosses. The University of Michigan Press, Ann Arbor pp 306.

    Google Scholar 

  • Dixit, S. S. & J. P. Smol, 1989. Algal Assemblages in Acid-Stressed Lakes with Particular Emphasis on Diatoms and Chrysophytes. Acid Stress and Aquatic Microbial Interactions. S. S. Rao. CRC Press, Inc, Boca Raton, Florida pp 91–114.

    Google Scholar 

  • Fairchild, G. W. & J. W. Sherman, 1990. Effects of liming on nutrient limitation of epilithic algae in an acid lake. Water, Air, and Soil Pollution 52: 133–147.

    Article  CAS  Google Scholar 

  • Fairchild, G. W. & J. W. Sherman, 1992. Linkage between epilithic algal growth and water column nutrients in softwater lakes. Canadian Journal of Fisheries and Aquatic Sciences 49: 1641–1649.

    Article  CAS  Google Scholar 

  • Flensburg, T. & N. Malmer, 1970. Studies on mire vegetation in the Archaean Area of South-Western Götaland (south Sweden). Botaniska Notiser 123: 269–299.

    Google Scholar 

  • Gerrath, J. P., 2003. Conjugating green algae and desmids. In Wehr, J. D. & R. G. Sheath (eds) Freshwater Algae of North America, Academic Press New York: 353–81.

    Google Scholar 

  • Greenwood, J. L., 1998. The Effects of pH and Light on Periphyton Communities in a Michigan Peatland. Bowling Green State University Bowling Green, OH.

    Google Scholar 

  • Hill, W. R., 1996. Effects of Light. In Stevenson, R. J., M. L. Bothwell, & R. L. Lowe (eds), Algal Ecology, Freshwater Benthic Ecosystems. Academic Press, San Diego, CA: 121–148.

    Google Scholar 

  • Hörnström, E., 1999. Long-term phytoplankton changes in acid and limed lakes in SW Sweden. Hydrobiologia 394: 93–102.

    Article  Google Scholar 

  • Hörnström, E., 2002. Phytoplankton in 63 limed lakes in comparison with the distribution in 500 untreated lakes with varying pH. Hydrobiologia 470: 115–126.

    Article  Google Scholar 

  • Hultberg, H. & I. B. Andersson, 1982. Liming of acidified lakes: induced long-term changes. Water, Air, and Soil Pollution 18: 311–331.

    Article  CAS  Google Scholar 

  • Jackson, M. B., E. M. Vandermeer, N. Lester, J. A. Booth L. Molot & I. M. Gray, 1990. Effects of neutralization and early reacidification on filamentous algae and macrophytes in Bowland Lake. Canadian Journal of Fisheries and Aquatic Sciences 47: 432–439.

    Google Scholar 

  • Kingston, J. C., 1982a. Association and distribution of common diatoms in surface samples from northern Minnesota peatlands. Beiheft zur Nova Hedwigia 73: 333–346.

    Google Scholar 

  • Kingston, J. C., 1982b. Paleolimnology of a Lake and Adjacent Fen in Southeastern Labrador: Evidence from Diatom Assemblages. 7th International Diatom Symposium, Philadelphia, Otto Koeltz.

    Google Scholar 

  • Kingston, J. C., R. B. Cook, J. Kreis, G. Russel, K. E. Camburn, S. A. Norton, P. R. Sweets, M. W. Binford, M. J. Mitchell, S. C. Schinder, L. Shane & G. King, 1990. Paleoecological investigation of recent lake acidification in the northern Great Lakes states. Journal of Paleolimnology 4: 153–201.

    Article  Google Scholar 

  • Klug, J. L. & J. M. Fischer, 2000. Factors influencing the growth of Mougeotia in experimentally acidified mesocosms. Canadian Journal of Fisheries and Aquatic Sciences 57: 538–547.

    Article  Google Scholar 

  • Mataloni, G., 1999. Ecological studies on algal communities from Tierra del Fuego peat bogs. Hydrobiologia 391: 157–171.

    Article  Google Scholar 

  • Müller, P., 1980. Effects of artifical acidification on the growth of periphyton. Canadian Journal of Fisheries and Aquatic Sciences 37: 355–363.

    Article  Google Scholar 

  • Olem, H., 1991. Liming Acidic Surface Waters. Lewis Publishers, Chelsea, Michigan, pp 331.

    Google Scholar 

  • Ott, R. L. & M. Longnecker, 2001. An Introduction to Statistical Methods and Data Analysis. Duxbury, Pacific Grove, CA, pp 1152.

    Google Scholar 

  • Parkyn, L. & R. E. H. A. P. Stoneman Ingram (eds), 1997. Conserving Peatlands. CAB International, Wallingford, UK, pp 500.

    Google Scholar 

  • Patrick, R. & C. W., Reimer, 1966. The Diatoms of the United States, Volume 1: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. The Academy of Natural Sciences of Philadelphia. Philadelphia, PA: 688.

    Google Scholar 

  • Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States, Volume 2, Part 1: Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae. The Academy of Natural Sciences of Philadelphia. Philadelphia, PA: 213.

    Google Scholar 

  • Planas, D., 1996. Acidification effects. In Stevenson R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: pp. 497–530.

    Google Scholar 

  • Poulicková, A., P. Hájková, P. Krenková & M. Hájek, 2004. Distribution of diatoms and bryophytes on linear transects through spring fens. Nova Hedwigia 78: 411–424.

    Article  Google Scholar 

  • Prescott, G. W., 1962. Algae of the Western Great Lakes Area, With an Illustrated Key to the Genera of Desmids and Freshwater Diatoms. W.C. Brown Co, Dubuque, IA, pp 977.

    Google Scholar 

  • Prescott, G. W., H. Croasdale, W. C. Vinyard & C. E. d M. Bicudo, 1975–1983. A Synopsis of North American desmids. University of Nebraska Press, Lincoln and London.

    Google Scholar 

  • Renberg, I. & H. Hultberg, 1992. A paleolimnological assessment of acidification and liming effects on diatom assemblages in a Swedish lake. Canadian Journal of Fisheries and Aquatic Sciences 49: 65–72.

    Article  Google Scholar 

  • Rühland, K., J. P. Smol, J. P. P. Jasinski & B. G. Warner, 2000. Response of diatoms and other siliceous indicators to the developmental history of a peatland in the Tiksi Forest, Siberia, Russia. Arctic, Antarctic, and Alpine Research 32: 167–178.

    Article  Google Scholar 

  • Schindler, D. W., K. H. Mills, D. F. Malley, D. L. Findlay, J. A. Shearer, I. J. Davies, M. A. Turner, G. A. Linsey & D. R. Cruikshank, 1985. Long-term ecosystem stress: the effects of years of experimental acidification on a small lake. Science 228: 1395–1401.

    Article  PubMed  Google Scholar 

  • Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), 1996. Algal Ecology: Freshwater Benthic Ecosystems. Aquatic Ecology. Academic Press, San Diego, pp 753.

    Google Scholar 

  • Stevenson, R. J., P. V. McCormick & R. Frydenborg, 2002. Methods for Evaluating Wetland Condition #11: Using Algae to Assess Environmental Conditions in Wetlands. EPA-22-R-02-021. USEPA, Washington, DC.

    Google Scholar 

  • Turner, M. A., E. T. Howell, M. Summerby, R. H. Hesslein, D. L. Findlay & M. B. Jackson, 1991. Changes in epilithon and epiphyton associated with experimental acidification of a lake to pH 5. Limnology and Oceanography 36: 1390–1405.

    CAS  Google Scholar 

  • Turner, M. A., M. B. Jackson, D. L. Findlay, R. W. Graham, E. R. DeBruyn & E. M. Vandermeer, 1987. Early Responses of Periphyton to Experimental Lake Acidification. Canadian Journal of Fisheries and Aquatic Sciences 44: 135–149.

    CAS  Google Scholar 

  • Turner, M. A., G. G. C. Robinson, B. E. Townsend, B. J. Hann & J. A. Amaral, 1995a. Ecological effects of blooms of filamentous green algae in the littoral zone of an acid lake. Canadian Journal of Fisheries and Aquatic Sciences 52: 2264–2275.

    Google Scholar 

  • Turner, M. A., D. W. Schindler, D. L. Findlay, M. B. Jackson & G. G. C. Robinson, 1995b. Disruption of littoral algal associations by Experimental Lake acidification. Canadian Journal of Fisheries and Aquatic Sciences 52: 2238–2250.

    Google Scholar 

  • van Dam, H. & A. Mertens, 1995. Long-term changes of diatoms and chemistry in headwater streams polluted by atmospheric deposition of sulphur and nitrogen compounds. Freshwater Biology 34: 579–600.

    Article  Google Scholar 

  • van Dam, H., G. Suurmond & C. J. F. ter Braak, 1981. Impact of acidification on diatoms and chemistry of Dutch moorland pools. Hydrobiologia 83: 425–459.

    Article  Google Scholar 

  • Verb, R. G. & M. L. Vis, 2000. Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites. Journal of the North American Benthological Society 19: 274–288.

    Article  Google Scholar 

  • Vitt, D. H., 2000. Peatlands: ecosystems dominated by bryophytes. In Shaw A. J. & B. Goffinet (eds), Bryophyte Biology. Cambridge University Press, Cambridge, New York: 476.

    Google Scholar 

  • Yan, N. D., 1979. Phytoplankton community of an acidified, heavy metal-contaminated lake near Sudbury, Ontario: 1973–1977. Water, Air, and Soil Pollution 11: 43–55.

    Article  CAS  Google Scholar 

  • Yung, Y., P. Stokes & E. Gorham, 1986. Algae of selected continental and maritime bogs in North America. Canadian Journal of Botany 64: 1825–1833.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Greenwood, J.L., Lowe, R.L. (2006). The effects of pH on a periphyton community in an acidic wetland, USA. In: Stevenson, R.J., Pan, Y., Kociolek, J.P., Kingston, J.C. (eds) Advances in Algal Biology: A Commemoration of the Work of Rex Lowe. Developments in Hydrobiology, vol 185. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5070-4_5

Download citation

Publish with us

Policies and ethics