Skip to main content

Microarrays

Gene expression profiling approaches for the monitoring of anti-cancer immune responses

  • Chapter
Analyzing T Cell Responses
  • 893 Accesses

Abstract

Modulation of cancer growth by the immune system is a natural phenomenon that can be enhanced by immune manipulation. The complexity of this biological event has only partially explored. Conventional monitoring of immune responses has extensively focused on specific interactions between immune and cancer cells based on limited number of well defined molecules. The discovery of additional co-factors and multiple components involved in a variety of signal transduction and other regulatory pathways of immune recognition has broadened the horizons of conventional immunology studies. As the understanding of the network of interactions between individual molecules associated with immune function increases, it is becoming apparent that no single mechanism or hypothesis can in itself explain complex phenomena such as immunologically-mediated tumor rejection. As described in depth in previous chapters, the components of the innate and adaptive immune response that may be involved in successful tumor rejection are far more complex than it could be described with a hypothesis centered approach as least at the time of this writings. Several components of the immune response may be genetically pre-programmed, epigenetically modified and variably recruited or regulated within the tumor microenvironment by factors with immune modulatory properties secreted by tumor and/or bystander cells. Such complexity can only be appreciated and resolved with the help of high throughput tools capable of providing a global view of biological processes as they occur. A dynamic snap shot at the global transcript level could provide a whole insight of tumor host interaction and lead to a better understanding of the mechanisms of tumor rejection. In this chapter, we will select examples of how high-throughput gene expression profiling may contribute to the understanding of anti-cancer immune responses and strategies which could be applied in immune monitor during cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfel T., Klehmann E., Muller C., Schutt K.H., Meyer zum Buschenfelde K.H., Knuth A. Lysis of human melanoma cells by autologous cytolytic T cell clones. Identification of human histocompatibility leukocyte antigen A2 as a restriction element for three different antigens. J Exp Med 1989, 170:797–810.

    Article  PubMed  CAS  Google Scholar 

  2. Kawakami Y., Zakut R., Topalian S.L., Stotter H., Rosenberg S.A. Shared human melanoma antigens. Recognition by tumor-infiltrating lymphocytes in HLA-A2.1-transfected melanomas. J Immunol 1992, 148:638–643.

    PubMed  CAS  Google Scholar 

  3. Atkins M.B., Lotze M.T., Dutcher J.P., et al. High-dose recombinant interleukin-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1998, 17:2105–2116.

    Google Scholar 

  4. Yang J.C., Rosenberg S.A. An ongoing prospective randomized comparison of interleukin-2 regimens for the treatment of metastatic renal cell cancer [see comments]. Cancer J Sci.Am 1997, 3Suppl 1:S79–84:S79–S84.

    PubMed  Google Scholar 

  5. van der Bruggen P., Traversari C., Chomez P., et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991, 254:1643–1647.

    PubMed  Google Scholar 

  6. Old L.J., Chen Y.T. New Paths in Human Cancer Serology. J Exp.Med 1998, 187:1163–1167.

    Article  PubMed  CAS  Google Scholar 

  7. Boon T., Coulie P.G., Van den Eynde B. Tumor antigens recognized by T cells. Immunol Today 1997, 18:267–268.

    Article  PubMed  CAS  Google Scholar 

  8. Rosenberg S.A. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today 1997, 18:175–182.

    Article  PubMed  CAS  Google Scholar 

  9. Marincola F.M., Ferrone S. Immunotherapy of melanoma: the good news, the bad news and what to do next. Sem Cancer Biol 2003, 13:387–389.

    Google Scholar 

  10. Cormier J.N., Salgaller M.L., Prevette T., et al. Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A [see comments]. Cancer J.Sci.Am. 1997, 3:37–44.

    PubMed  CAS  Google Scholar 

  11. Rosenberg S.A., Yang J.C., Schwartzentruber D., et al. Immunologic and therapeutic evaluation of a synthetic tumor associated peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998, 4:321–327.

    Article  PubMed  CAS  Google Scholar 

  12. Lengauer C., Kinzler K.W., Vogelstein B. Genetic instabilities in human cancers. Nature 1998, 396:643–649.

    Article  PubMed  CAS  Google Scholar 

  13. Dunn G.P., Bruce A.T., Ikeda H., Old L.J., Schreiber R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 2002, 3:991–998.

    CAS  Google Scholar 

  14. Marincola F.M., Wang E., Herlyn M., Seliger B., Ferrone S. Tumors as elusive targets of T cell-directed immunotherapy. Trends Immunol 2003, 24:334–341.

    Article  CAS  Google Scholar 

  15. Monsurro’ V., Wang E., Panelli M.C., et al. Active-specific immunization against cancer: is the problem at the receiving end? Sem Cancer Biol 2003, 13:473–480.

    CAS  Google Scholar 

  16. Jin P., Wang E.: Polymorphism in clinical immunology. From HLA typing to immunogenetic profiling. J Transl Med 2003, 1:8.

    Article  PubMed  Google Scholar 

  17. Marincola F.M., Jaffe E.M., Hicklin D.J., Ferrone S. Escape of human solid tumors from T cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000, 74:181–273.

    PubMed  CAS  Google Scholar 

  18. Marincola F.M., Shamamian P., Rivoltini L., et al. HLA associations in the anti-tumor response against malignant melanoma J Immunother 1996, 18:242–252.

    Google Scholar 

  19. Keen L.J. The extent and analysis of cytokine and cytokine receptor gene polymorphism. Transpl Immunol 2002, 10:143–146.

    PubMed  CAS  Google Scholar 

  20. Turner D., Choudhury F., Reynard M., Railton D. Navarrete C. Typing of multiple single nucleotide polymorphisms in cytokine and receptor genes using SNaPshot. Hum Immunol 2002, 63:508–513.

    Article  PubMed  CAS  Google Scholar 

  21. McCarron S.L., Edwards S., Evans P.R. The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators, Easton DF, Eeles RA, Howell WM: Influence of cytokine gene polymorphism on the development of prostate cancer. Cancer Res 2002, 62:3369–3372.

    PubMed  CAS  Google Scholar 

  22. Howell W.M., Turner S.J., Bateman A.C., Theaker J.M. IL-10 promoter polymorphisms influence tumor development in cutaneous malignant melanoma. Genes Immun 2001, 2:25–31.

    Article  PubMed  CAS  Google Scholar 

  23. Howell W.M., Bateman A.C., Turner S.J., Collins A., Theaker J.M. Influence of vascular endothelial growth factor single nucleotide polymorphisms on tumor development in cutaneous malignant melanoma. Genes Immun 2002, 3:229–232.

    Article  PubMed  CAS  Google Scholar 

  24. Bidwell J.P., Alvarez M., Feister H., Onyia J., Hock J. Nuclear matrix proteins and osteoblast gene expression. J Bone Miner Res 1998, 13:155–167.

    PubMed  CAS  Google Scholar 

  25. Schwab E.D., Pienta K.J. Cancer as a complex adaptive system. Med Hypotheses 1996, 47:235–241.

    Article  PubMed  CAS  Google Scholar 

  26. Cucuianu A. Chaos in cancer? Nat Med 1998, 4:1342–1343.

    Article  PubMed  CAS  Google Scholar 

  27. Dalgleish A. The relevance of non-linear mathematics (chaos theory) to the treatment of cancer, the role of the immune response and the potential for vaccines. QJM 1999, 92:347–359.

    Article  PubMed  CAS  Google Scholar 

  28. Wang E., Marincola F.M. cDNA microarrays and the enigma of melanoma immune responsiveness. Cancer J Sci Am 2001, 7:16–23.

    CAS  Google Scholar 

  29. Wang E., Panelli M.C., Marincola F.M. Genomic analysis of cancer. Princ Pract Oncol 2003, 17:1–16.

    Google Scholar 

  30. Wang E., Marincola F.M. A natural history of melanoma: serial gene expression analysis. Immunol Today 2000, 21:619–623.

    Article  PubMed  CAS  Google Scholar 

  31. Andersen M.H., Gehl J., Reker S., et al. Dynamic changes of specific T cell responses to melanoma correlate with IL-2 administration. Sem Cancer Biol 2003, 13:449–459.

    CAS  Google Scholar 

  32. Parmiani G., Castelli C., Rivoltini L., et al. Immunotherapy of melanoma. Sem Cancer Biol 2003, 13:391–400.

    CAS  Google Scholar 

  33. Horig H., Kaufman H.L. Local delivery of poxvirus vaccines for melanoma. Sem Cancer Biol 2003, 13:417–422.

    CAS  Google Scholar 

  34. Scheibenbogen C., Letsch A., Schmittel A., Asemissen A.M., Thiel E., Keilholz U. Rational peptide-based tumor vaccine development and T cell monitoring. Sem Cancer Biol 2003, 13:423–429.

    CAS  Google Scholar 

  35. Talebi T., Weber J.S. Peptide vaccine trials for melanoma: preclinical background and clinical results. Sem Cancer Biol 2003, 13:431–438.

    CAS  Google Scholar 

  36. Paczesny S., Ueno H., Fay J., Banchereau J., Palucka K. Dendritic cells as vectors for immunotherapy of cancer. Sem Cancer Biol 2003, 13:439–447.

    CAS  Google Scholar 

  37. Speiser D.E., Pittet M.J., Rimoldi D., et al. Evaluation of melanoma vaccines with molecularly defined antigens by ex vivo monitoring of tumor specific T cells. Sem Cancer Biol 2003, 13:461–472.

    CAS  Google Scholar 

  38. Kaech S.M., Hemby S., Kersh E., Ahmed R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 2002, 111:837–851.

    Article  PubMed  CAS  Google Scholar 

  39. Wherry E.J., Teichgraber V., Becker T.C., et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunol 2003, 4:225–234.

    CAS  Google Scholar 

  40. van Baarle D., Kostense S., van Oers M.H.J., Miedema F. Failing immune control as a result of impaired CD8+ T-cell maturation: CD27 might provide a clue. Trends Immunol 2002, 23:586–591.

    PubMed  Google Scholar 

  41. Monsurro’ V., Nagorsen D., Wang E., et al. Functional heterogeneity of vaccineinduced CD8+ T cells. J Immunol 2002, 168:5933–5942.

    CAS  Google Scholar 

  42. Wang E., Miller L., Ohnmacht G.A., Liu E., Marincola F.M. High fidelity mRNA amplification for gene profiling using cDNA microarrays. Nature Biotech 2000, 17:457–459.

    Google Scholar 

  43. Wang E., Marincola F.M. Amplification of small quantities of mRNA for transcript analysis. In DNA arrays-A Molecular Cloning Manual, edn First. Edited by Bowtell D, Sambrook J. Cold Springs Harbor, NY: Cold Spring Harbor Laboratory Press; 2002:204–213.

    Google Scholar 

  44. Kammula U.S., Lee K.-H., Riker A., et al. Functional analysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. J Immunol 1999, 163:6867–6879.

    PubMed  CAS  Google Scholar 

  45. Panelli M.C., Riker A., Kammula U.S., et al. Expansion of Tumor/T cell pairs from Fine Needle Aspirates (FNA) of Melanoma Metastases. J Immunol 2000, 164:495–504.

    PubMed  CAS  Google Scholar 

  46. Pockaj B.A., Sherry R.M., Wei J.P., et al. Localization of 111indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer 1994, 73:1731–1737.

    PubMed  CAS  Google Scholar 

  47. Fuchs E.J., Matzinger P. Is cancer dangerous to the immune system? Semin. Immunol. 1996, 8:271–280.

    Article  PubMed  CAS  Google Scholar 

  48. Ohnmacht G.A., Wang E., Mocellin S., et al. Short term kinetics of tumor antigen expression in response to vaccination. J Immunol 2001, 167:1809–1820.

    PubMed  CAS  Google Scholar 

  49. Wang E., Miller L.D., Ohnmacht G.A., et al. Prospective molecular profiling of subcutaneous melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 2002, 62:3581–3586.

    PubMed  CAS  Google Scholar 

  50. Panelli M.C., Wang E., Phan G., et al. Genetic profiling of peripharal mononuclear cells and melanoma metastases in response to systemic interleukin-2 administration. Genome Biol 2002, 3:RESEARCH0035.

    Google Scholar 

  51. Wang E., Marincola F.M., Stroncek D. Human leukocyte antigen (HLA) and Human Neutrophil Antigen (HNA) systems. In HEMATOLOGY: Basic Principles and Practice., edn 4th. Edited by Hoffman R, Benz EJ, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P. Philadelphia. PA: Elsevier Science; 2003.

    Google Scholar 

  52. Rubin J.T., Adams S.D., Simonis T., Lotze M.T. HLA polymorphism and response to IL-2 bases therapy in patients with melanoma. Proc.Soc.Biol.Ther.Annu.Meet. 1991, 1:18.

    Google Scholar 

  53. Lee J.E., Reveille J.D., Ross M.I., Platsoucas C.D. HLA-DQB1*0301 association with increased cutaneous melanoma risk. Int J Cancer; 59(4):510–3 1994.

    PubMed  CAS  Google Scholar 

  54. Howell W.M., Calder P.C., Grimble R.F. Gene polymorphisms, inflammatory diseases and cancer. Proc Nutr Soc 2002, 61:447–456.

    Article  PubMed  CAS  Google Scholar 

  55. Wang E., Adams S., Zhao Y., et al. A strategy for detection of known and unknown SNP using a minimum number of oligonucleotides. J Transl Med 2003, 1:4.

    Article  PubMed  Google Scholar 

  56. Marincola F.M. Mechanisms of immune escape and immune tolerance. In Principles and practice of the biologic therapy of cancer., edn Third. Edited by Rosenberg SA. Philadelphia: Lippincott Williams & Wilkins; 2000:601–617.

    Google Scholar 

  57. Bittner M., Meltzer P., Chen Y., et al. Molecular classification of cutaneous melignant melanoma by gene expression: shifting from a countinuous spectrum to distinct biologic entities. Nature 2000, 406:536–840.

    Article  PubMed  CAS  Google Scholar 

  58. Mocellin S., Panelli M.C., Wang E., Nagorsen D., Marincola F.M. The dual role of IL-10. Trends Immunol 2002, 24:36–43.

    Google Scholar 

  59. Taniguchi T. Transcription factors IRF-1 and IRF-2: linking the immune responses and tumor suppression. J Cell Physiol 1997, 173:128–130.

    Article  PubMed  CAS  Google Scholar 

  60. Daniel D., Meyer-Morse N., Bergsland E.K., Dehne K., Coussens L.M., Hanahan D. Immune enhancement of skin carcinogenesis by CD4+ T cells. J Exp Med 2003, 197:1017–1028.

    Article  PubMed  CAS  Google Scholar 

  61. Hanahan D., Lanzavecchia A., Mihich E. Fourteenth Annual Pezcoller Symposium: the novel dichotomy of immune interactions with tumors. Cancer Res 2003, 63:3005–3008.

    PubMed  CAS  Google Scholar 

  62. Margolin K.A. Interleukin-2 in the treatment of renal cancer. Semin Oncol 2000, 27:194–203.

    PubMed  CAS  Google Scholar 

  63. Cotran R.S., Pober J.S., Gimbrone M.A. Jr., et al. Endothelial activation during interleukin 2 immunotherapy. A possible mechanism for the vascular leak syndrome. J Immunol 1988, 140:1883–1888.

    PubMed  CAS  Google Scholar 

  64. Kasid A., Director E.P., Rosenberg S.A. Induction of endogenous cytokine-mRNA in circulating peripheral blood mononuclear cells by IL-2 administration to cancer patients. J Immunol 1989, 143:736–739.

    PubMed  CAS  Google Scholar 

  65. Panelli M.C., Martin B., Nagorsen D., et al. A genomic and proteomic-based hypothesis on the eclectic effects of systemic interleukin-2 administration in the context of melanoma-specific immunization. Cells Tissues Organs 2004;177(3):124–31

    Article  PubMed  CAS  Google Scholar 

  66. Monsurro V., Wang E., Yamano Y., et al. Quiescent phenotype of tumor-specific CD8+ T cells following immunization. Blood. 2004;104(7):1970–1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Wang, E. (2005). Microarrays. In: Nagorsen, D., Marincola, F. (eds) Analyzing T Cell Responses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3623-X_17

Download citation

Publish with us

Policies and ethics