Skip to main content

Strategies for the Regulation of Postharvest Fruit Softening by Changing Cell Wall Enzyme Activity

  • Chapter
Production Practices and Quality Assessment of Food Crops

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, A. E. R. and J. M. Labavitch (1980). Cell wall metabolism in ripening fruit. II. Changes in carbohydrate-degrading enzymes in ripening ‘Bartlett’ pears. Plant Physiology 65: 1014–1016.

    CAS  Google Scholar 

  • Albersheim, P., A. G. Darvill, M. A. O’Neill, H. A. Schols and A. G. J. Voragen (1996). An hypothesis: The same six polysaccharides are components of the primary cell walls of all higher plants. In J. Visser and A. G. J. Voragen (eds.), Pectins and pectinases. Elsevier Science, The Netherlands, pp. 47–55.

    Google Scholar 

  • Ali, Z. M., S. Armugam and H. Lazan (1995). β-Galactosidase and its significance in ripening mango fruit. Phytochemistry 38: 1109–1114.

    Article  CAS  Google Scholar 

  • Ali, Z. M., S.-Y. Ng, R. Othman, L.-Y. Goh and H. Lazan (1998). Isolation, characterization and significance of papaya β-galactanases to cell wall modification and fruit softening during ripening. Physiologia Plantarum 104: 105–115.

    Article  CAS  Google Scholar 

  • Amarante, C. and N. H. Banks (2001). Postharvest physiology and quality of coated fruits and vegetables. Horticultural Reviews 26: 161–238.

    CAS  Google Scholar 

  • Andrews, P. K. and S. Li (1994). Partial purification and characterization of β-d-galactosidase from sweet cherry, a non climateric fruit. Journal of Agricultural and Food Chemistry 42: 2177–2182.

    Article  CAS  Google Scholar 

  • Arrowsmith, D. A. and J. de Silva (1995). Characterisation of two tomato fruit-expressed cDNAs encoding xyloglucan endotransglycosylase. Plant Molecular Biology 28: 391–403.

    Article  CAS  Google Scholar 

  • Artés, F., A. Cano and J. P. Fernández-Trujillo (1996). Pectolytic enzyme activity during intermittent warming storage of peaches. Journal of Food Science 61: 311–313, 321.

    Google Scholar 

  • Asada, K., T. Ohba, S. Takahashi and I. Kato (1999). Alteration of fruit characteristics in transgenic tomatoes with modified gene expression of endo-xyloglucan transferase. Hort Science 34: 533.

    Google Scholar 

  • Atkinson, R. G., R. Schröder, I. C. Hallett, D. Cohen and E. A. MacRae (2002). Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion. Plant Physiology 129: 122–133.

    Article  CAS  Google Scholar 

  • Ayub, R., M. Guis, M. Ben Amor, L. Gillot, J.-P. Roustan, A. Latché, M. Bouzayen and J.-C. Pech (1996). Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nature Biotechnology 14: 862–866.

    Article  CAS  Google Scholar 

  • Banks, N. H., J. G. M. Cutting and S. E. Nicholson (1997). Approaches to optimising surface coatings for fruits. New Zealand Journal of Crop and Horticultural Science 25: 261–272.

    Article  Google Scholar 

  • Banks, N. H., B. K. Dadzie and D. J. Cleland (1993). Reducing gas exchange of fruits with surface coatings. Postharvest Biology and Technology 3: 269–284.

    Article  CAS  Google Scholar 

  • Barka, E. A., S. Kalantari, J. Makhlouf and J. Arul (2000). Impact of UV-C irradiation on the cell wall-degrading enzymes during ripening of tomato (Lycopersicon esculentum L.) fruit. Journal of Agricultural and Food Chemistry 48: 667–671.

    Article  CAS  Google Scholar 

  • Barrett, D. M., E. Garcia and J. E. Wayne (1998). Textural modification of processing tomatoes. CRC Critical Reviews in Food Science and Nutrition 38: 173–258.

    Article  CAS  Google Scholar 

  • Beldman, G., H. A. Schols, S. M. Pitson, M. J. F. Searle-van Leeuwen and A. G. J. Voragen (1997). Arabinans and arabinan degrading enzymes. In R. J. Sturgeon (ed.), Advances in macromolecular carbohydrate research, Vol 1. Greenwich, Connecticut, Jai Press, USA, pp. 1–64.

    Google Scholar 

  • Ben-Arie, R. and S. Lavee (1971). Pectic changes occurring in Elberta peaches suffering from woolly breakdown. Phytochemistry 10: 531–538.

    Article  CAS  Google Scholar 

  • Ben-Arie, R. and L. Sonego (1980). Pectolytic enzyme activity involved in woolly breakdown of stored peaches. Phytochemistry 19: 2553–2555.

    CAS  Google Scholar 

  • Bewley, J. D., M. Banik, R. Bourgault, J. A. Feurtado, P. Toorop and H. W. M. Hilhorst (2000). Endo-β-mannanase activity increases in the skin and outer pericarp of tomato fruits during ripening. Journal of Experimental Botany 51: 529–538.

    Article  CAS  Google Scholar 

  • Biggs, M. S., W. R. Woodson and A. K. Handa (1988). Biochemical basis of high-temperature inhibition of ethylene biosynthesis in ripening tomato fruits. Physiologia Plantarum 72: 572–578.

    CAS  Google Scholar 

  • Biles, C. L., B. D. Bruton, V. Russo and M. M. Wall (1997). Characterisation of β-galactosidase isozymes of ripening peppers. Journal or the Science of Food and Agriculture 75: 237–243.

    CAS  Google Scholar 

  • Bonghi, C., L. Ferrarese, B. Ruperti, P. Tonutti and A. Ramina (1998). Endo-β-1,4-glucanases are involved in peach fruit growth and ripening, and regulated by ethylene. Physiologia Plantarum 102: 346–352.

    Article  CAS  Google Scholar 

  • Bouranis, D. L. and C. A. Niavis (1992). Cell wall metabolism in growing and ripening stone fruit. Plant and Cell Physiology 33: 999–1008.

    CAS  Google Scholar 

  • Brecht, J. K., A. A. Kader and D. W. Ramming (1984). Description and postharvest physiology of some slow-ripening nectarine genotypes. Journal of the American Society for Horticultural Science 109: 596–600.

    CAS  Google Scholar 

  • Brummell, D. A. and M. H. Harpster (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology 47: 311–340.

    Article  CAS  Google Scholar 

  • Brummell, D. A. and J. M. Labavitch (1997). Effect of antisense suppression of endopolygalacturonase activity on polyuronide molecular weight in ripening tomato fruit and in fruit homogenates. Plant Physiology 115: 717–725.

    CAS  Google Scholar 

  • Brummell, D. A., C. R. Bird, W. Schuch and A. B. Bennett (1997). An endo-1,4-β-glucanase expressed at high levels in rapidly expanding tissues. Plant Molecular Biology 33: 87–95.

    Article  CAS  Google Scholar 

  • Brummell, D. A., B. D. Hall and A. B. Bennett (1999a). Antisense suppression of tomato endo-1,4-β-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Molecular Biology 40: 615–622.

    Article  CAS  Google Scholar 

  • Brummell, D. A., M. H. Harpster, P. M. Civello, J. M. Palys, A. B. Bennett and P. Dunsmuir (1999b). Modification of expansin protein abundance in tomato fruits alters softening and cell wall polymer metabolism during ripening. Plant Cell 11: 2203–2216.

    Article  CAS  Google Scholar 

  • Brummell, D. A., M. H. Harpster and P. Dunsmuir (1999c). Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Molecular Biology 39: 161–169.

    Article  CAS  Google Scholar 

  • Brummell, D. A., W. J. Howie, C. Ma and P. Dunsmuir (2002). Postharvest fruit quality of transgenic tomatoes suppressed in expression of a ripening-related expansin. Postharvest Biology and Technology 25: 209–220.

    Article  CAS  Google Scholar 

  • Brummell, D. A., C. C. Lashbrook and A. B. Bennett (1994). Plant endo-1,4-β-d-glucanases: structure, properties and physiological function. In M. E. Himmel, J. O. Baker and R. P. Overend (eds.), Enzymatic conversion of biomass for fuels production (American Chemical Society Symposium Series 566). American Chemical Society, New York, USA, pp. 100–129.

    Google Scholar 

  • Budelier, K. A., A. G. Smith and G. S. Gasser (1990). Regulation of a stylar transmitting tissue-specific gene in wild-type and transgenic tomato and tobacco. Molecular and General Genetics 224: 183–192.

    CAS  Google Scholar 

  • Burns, J. K. (1990). α-and β-galactosidase activities in juice vesicles of stored Valencia oranges. Phytochemistry 29: 2425–2429.

    Article  CAS  Google Scholar 

  • Burns, J. K. and E. A. Baldwin (1994). Glycosidase activities in grapefruit flavedo, albedo and juice vesicles during maturation and senescence. Physiologia Plantarum 90: 37–44.

    Article  CAS  Google Scholar 

  • Burns, J. K., D. J. Lewandowski, C. J. Nairn and G. E. Brown (1998). Endo-1,4-β-glucanase gene expression and cell wall hydrolase activities during abscission in Valencia orange. Physiologia Plantarum 102: 217–225.

    Article  CAS  Google Scholar 

  • Cameron, R. G., J. A. Manthey, R. A. Baker and K. Grohmann (2001). Purification and characterization of a beta-glucosidase from Citrus sinensis var. Valencia fruit tissue. Journal of Agricultural and Food Chemistry 49: 4457–4462.

    Article  CAS  Google Scholar 

  • Campbell, A. D., M. Huysamer, H. U. Stotz, L. C. Greve and J. M. Labavitch (1990). Comparison of ripening processes in intact tomato fruit and excised pericarp discs. Plant Physiology 94: 1582–1589.

    CAS  Google Scholar 

  • Cardarelli, A., R. Botondi, K. Vizovitis and F. Mencarelli (2002). Effects of exogenous propylene on softening, glycosidase, and pectinmethylesterase activity during postharvest ripening of apricots. Journal of Agricultural and Food Chemistry 50: 1441–1446.

    Article  CAS  Google Scholar 

  • Carey, A. T., K. Holt, S. Picard, R. Wilde, G. A. Tucker, C. R. Bird, W. Schuch and G. B. Seymour (1995). Tomato exo-(1→4)-β-D-galactanase. Isolation, changes during ripening in normal and mutant tomato fruit, and characterization of a related cDNA clone. Plant Physiology 108: 1099–1107.

    Article  CAS  Google Scholar 

  • Carey, A. T., D. L. Smith, E. Harrison, C. R. Bird, K. C. Gross, G. B. Seymour and G. A. Tucker (2001). Down-regulation of a ripening-related β-galactosidase gene (TBG1) in transgenic tomato fruits. Journal of Experimental Botany 52: 663–668.

    CAS  Google Scholar 

  • Carpita, N. C. and D. M. Gibeaut (1993). Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant Journal 3: 1–30.

    Article  CAS  Google Scholar 

  • Carrington, C. M. S. and R. Pressey (1996). β-Galactosidase II activity in relation to changes in cell wall galactosyl composition during tomato ripening. Journal of the American Society for Horticultural Science 121: 132–136.

    CAS  Google Scholar 

  • Cass, L. G., K. A. Kirven and R. E. Christoffersen (1990). Isolation and characterization of a cellulase gene family member expressed during avocado fruit ripening. Molecular and General Genetics 223: 76–86.

    CAS  Google Scholar 

  • Catalá, C., J. K. C. Rose and A. B. Bennett (1997). Auxin regulation and spatial localization of an endo-1,4-β-D-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant Journal 12: 417–426.

    Google Scholar 

  • Catalá, C., J. K. C. Rose and A. B. Bennett (2000). Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiology 122: 527–534.

    Google Scholar 

  • Chan, H. T., S. Y. T. Tam and S. T. Seo (1981). Papaya polygalacturonase and its role in thermally injured ripening fruit. Journal of Food Science 46: 190–197.

    Article  CAS  Google Scholar 

  • Cheng, G. W. and D. J. Huber (1997). Carbohydrate solubilization of tomato locule tissue cell walls: Parallels with locule tissue liquefaction during ripening. Physiologia Plantarum 101: 51–58.

    Article  CAS  Google Scholar 

  • Cheng, T. S., J. D. Floros, R. L. Shewfelt and C. J. Chang (1988). The effect of high temperature storage on ripening of tomatoes. Journal of Plant Physiology 132: 459–464.

    CAS  Google Scholar 

  • Chrost, B. and K. Schmitz (1997). Changes in soluble sugar and activity of α-galactosidases and acid invertase during muskmelon (Cucumis melo L.) fruit development. Journal of Plant Physiology 151: 41–50.

    CAS  Google Scholar 

  • Civello, P. M., A. L. T. Powell, A. Sabehat and A. B. Bennett (1999). An expansin gene expressed in ripening strawberry fruit. Plant Physiology 121: 1273–1279.

    Article  CAS  Google Scholar 

  • Collmer, A. and N. T. Keen (1986). The role of pectic enzymes in plant pathogenesis. Annual Review of Phytopathology 24: 383–409.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. (1997). Relaxation in a high stress environment: The molecular bases of extensible cell walls and cell enlargement. Plant Cell 9: 1031–1041.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. (1998). Cell wall loosening by expansins. Plant Physiology 118: 333–339.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. (1999). Enzymes and other agents that enhance cell wall extensibility. Annual Review of Plant Physiology and Plant Molecular Biology 50: 391–417.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. (2000a). Loosening of plant cell walls by expansins. Nature 407: 321–326.

    Article  CAS  Google Scholar 

  • Cosgrove, D. J. (2000b). Expansive growth of plant cell walls. Plant Physiology and Biochemistr 38: 109–124.

    CAS  Google Scholar 

  • Cosgrove, D. J., P. Bedinger and D. M. Durachko (1997). Group I allergens of grass pollen as cell wall-loosening agents. Proceedings of the National Academy of Sciences of the United States of America 94: 6559–6564.

    CAS  Google Scholar 

  • Cutillas-Iturralde, A., I. Zarra, S. C. Fry and E. P. Lorences (1994). Implication of persimmon fruit hemicellulose metabolism in the softening process. Importance of xyloglucan endotransglycosylase. Physiologia Plantarum 91: 169–176.

    Article  CAS  Google Scholar 

  • Cutillas-Iturralde, A., I. Zarra and E. P. Lorences (1993). Metabolism of cell wall polysaccharides from persimmon fruit: Pectin solubilization during fruit ripening occurs in apparent absence of polygalacturonase activity. Physiologia Plantarum. 89: 369–375.

    Article  CAS  Google Scholar 

  • Darley, C. P., A. M. Forrester and S. J. McQueen-Mason (2001). The molecular basis of plant cell wall extension. Plant Molecular Biology 47: 179–195.

    CAS  Google Scholar 

  • Dawson, D. M., L. D. Melton and C. B. Watkins (1992). Cell wall changes in nectarines. Solubilization and depolymerization of pectic and neutral polymers during ripening and in mealy fruit. Plant Physiology 100: 1203–1210.

    CAS  Google Scholar 

  • DellaPenna, D., D. Kates and A. B. Bennett (1987). Polygalacturonase gene expression in Rutgers, rin, nor, and Nr tomato fruits. Plant Physiology 85: 502–507.

    Google Scholar 

  • DellaPenna, D., C. C. Lashbrook, K. Toenjes, J. J. Giovannoni, R. L. Fischer and A. B. Bennett (1990). Polygalacturonase isozymes and pectin depolymerization in transgenic rin tomato fruit. Plant Physiology 94: 1881–1886.

    Google Scholar 

  • Delmer, D. P. (1999). Cellulose biosynthesis: Exciting times for a difficult field of study. Annual Review of Plant Physiology and Plant Molecular Biology 50: 245–276.

    Article  CAS  Google Scholar 

  • Dennison, R. A., E. M. Ahmed and F. G. Martin (1967). Pectinesterase activity in irradiated ‘Valencia’ oranges. Journal of the American Society for Horticultural Science 91: 163–169.

    CAS  Google Scholar 

  • de Silva, J., D. Arrowsmith, A. Hellyer, S. Whiteman and S. Robinson (1994). Xyloglucan endotransglycosylase and plant growth. Journal of Experimental Botany 45: 1693–1701.

    Google Scholar 

  • de Silva, J. and M. E. Verhoeyen (1998). Production and characterization of antisense-exogalactanase tomatoes. In Report of the Demonstration Programme on Food Safety Evaluation of Genetically Modified Foods as a Basis for Market Introduction. Ministry of Economic Affairs, The Hague, pp. 99–106.

    Google Scholar 

  • De Veau, E. J. I., K. C. Gross, D. J. Huber and A. E. Watada (1993). Degradation and solubilization of pectin by β-galactosidases purified from avocado mesocarp. Physiologia Plantarum 87: 279–285.

    Google Scholar 

  • Dey, P. M. and E. del Campillo (1984). Biochemistry of the multiple forms of glycosidases in plants. Advances in Enzymology 56: 141–249.

    CAS  Google Scholar 

  • Dick, A. J. and J. M. Labavitch (1989). Cell wall metabolism in ripening fruit. IV. Characterization of the pectic polysaccharides solubilized during softening of ‘Bartlett’ pear fruit. Plant Physiology 89: 1394–1400.

    CAS  Google Scholar 

  • Dick, A. J., A. Opoku-Gyamfua and A. C. DeMarco (1990). Glycosidases of apple fruit: A multifunctional β-galactosidase. Physiologia Plantarum 80: 250–256.

    Article  CAS  Google Scholar 

  • ’Innocenzo, M. and F. M. Lajolo (2001). Effect of gamma irradiation on softening changes and enzyme activities during ripening of papaya fruit. Journal of Food Biochemistry 25: 425–438.

    Google Scholar 

  • Domingo, C., K. Roberts, N. J. Stacey, I. Connerton, F. Ruíz-Teran and M. C. McCann (1998). A pectate lyase from Zinnia elegans is auxin inducible. Plant Journal 13: 17–28.

    Article  CAS  Google Scholar 

  • Domínguez-Puigjaner, E., I. Llop, M. Vendrell and S. Prat (1997). A cDNA clone highly espressed in ripe banana fruit shows homology to pectate lyases. Plant Physiology 114: 1071–1076.

    Google Scholar 

  • Dong, L., H.-W. Zhou, L. Sonego, A. Lers and S. Lurie (2001a). Ethylene involvement in the cold storage disorder of ‘Flavortop’ nectarine. Postharvest Biology and Technology 23: 105–115.

    Article  Google Scholar 

  • Dong, L., H.-W. Zhou, L. Sonego, A. Lers and S. Lurie (2001b). Ripening of ‘Red Rosa’ plums: Effect of ethylene and 1-methylcyclopropene. Australian Journal of Plant Physiology 28: 1039–1045.

    CAS  Google Scholar 

  • Downs, C. G., C. J. Brady and A. Gooley (1992). Exopolygalacturonase protein accumulates late in peach fruit ripening. Physiologia Plantarum 85: 133–140.

    Article  CAS  Google Scholar 

  • Drury, R., S. Hörtensteiner, I. Donnison, C. R. Bird and G. B. Seymour (1999). Chlorophyll catabolism and gene expression in the peel of ripening banana fruits. Physiologia Plantarum 107: 32–38.

    Article  CAS  Google Scholar 

  • Dumville, J. C. and S. C. Fry (2000). Uronic acid-containing oligosaccharins: Their biosynthesis, degradation and signalling roles in non-diseased plant tissues. Plant Physiology and Biochemistry 38: 125–140.

    Article  CAS  Google Scholar 

  • Dunlap, J. R., S. E. Lingle and G. E. Lester (1990). Ethylene production in netted muskmelon subjected to postharvest heating and refrigerated storage. Hort Science 25: 207–209.

    CAS  Google Scholar 

  • El Assi, N., D. J. Huber and J. K. Brecht (1997). Irradiation-induced changes in tomato fruit and pericarp firmness, electrolyte efflux, and cell wall enzyme activity as influenced by ripening stage. Journal of the American Society for Horticultural Science 122: 100–106.

    CAS  Google Scholar 

  • Fanutti, C., M. J. Gidley and J. S. G. Reid (1991). A xyloglucan-oligosaccharide-specific α-D-xylosidase or exo-oligoxyloglucan-α-xylohydrolase from germinated nasturtium (Tropaeolum majus L.) seeds. Purification, properties and its interaction with a xyloglucan-specific endo-(1→4)-β-D-glucanase and other hydrolases during storage-xyloglucan mobilisation. Planta 184: 137–147.

    Article  CAS  Google Scholar 

  • Fanutti, C., M. J. Gidley and J. S. G. Reid (1993). Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-(1→4)-β-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant Journal 3: 691–700.

    Article  CAS  Google Scholar 

  • Farag, K. M. and J. P. Palta (1992). Evidence for a specific inhibition of the activity of polygalactur onase by lysophosphatidylethanolamine in tomato fruit tissue: Implication for enhancing storage stability and reducing abscission of the fruit. Plant Physiology (Suppl.) 99: 54.

    Google Scholar 

  • Farag, K. M. and J. P. Palta (1993). Use of lysophosphatidylethanolamine, a natural lipid, to retard tomato leaf and fruit senescence. Physiologia Plantarum 87: 515–521.

    Article  CAS  Google Scholar 

  • Fernández-Bolaños, J., R. Rodríguez, R. Guillén, A. Jiménez and A. Heredia (1995). Activity of cell wall-associated enzymes in ripening olive fruit. Physiologia Plantarum 93: 651–658.

    Google Scholar 

  • Ferrarese, L., L. Trainotti, P. Moretto, P. Polverino de Laureto, N. Rascio and G. Casadoro (1995). Differential ethylene-inducible expression of cellulase in pepper plants. Plant Molecular Biology 29: 735–747.

    Article  CAS  Google Scholar 

  • Fils-Lycaon, B. and M. Buret (1991). Changes in glycosidase activities during development and ripening of melon. Postharvest Biology and Technology 1: 143–151.

    Article  CAS  Google Scholar 

  • Fischer, R. L. and A. B. Bennett (1991). Role of cell wall hydrolases in fruit ripening. Annual Review of Plant Physiology and Plant Molecular Biology 42: 675–703.

    Article  CAS  Google Scholar 

  • Fishman M. L., K. C. Gross, D. T. Gillespie and S. M. Sondey (1989). Macromolecular components of tomato fruit pectin. Archives of Biochemistry and Biophysics 274: 179–191.

    Article  CAS  Google Scholar 

  • Fry, S. C. (1995). Polysaccharide-modifying enzymes in the plant cell wall. Annual Review of Plant Physiology and Plant Molecular Biology 46: 497–520.

    Article  CAS  Google Scholar 

  • Fry, S. C. (1998). Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochemical Journal 332: 507–515.

    CAS  Google Scholar 

  • Fry, S. C., R. C. Smith, P. R. Heterington and I. Potter (1992a). Endotransglycosylation of xyloglucan: A role in cell wall yielding? Current Topics in Plant Biochemistry and Physiology 11: 42–62.

    CAS  Google Scholar 

  • Fry, S. C., R. C. Smith, K. F. Renwick, D. J. Martin, S. K. Hodge and K. J. Matthews (1992b). Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochemical Journal 282: 821–828.

    CAS  Google Scholar 

  • Gaffe, J., D. M. Tieman and A. K. Handa (1994). Pectin methylesterase isoforms in tomato (Lycopersicon esculentum) tissues. Effects of expression of a pectin methylesterase antisense gene. Plant Physiology 105: 199–203.

    CAS  Google Scholar 

  • Gaffe, J., M. E. Tiznado and A. K. Handa (1997). Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase. Plant Physiology 114: 1547–1556.

    Article  CAS  Google Scholar 

  • Gerardi, C., F. Blando, A. Santino and G. Zacheo (2001). Purification and characterization of a β-glucosidase abundantly expressed in ripe sweet cherry (Prunus avium L.) fruit. Plant Science 160: 795–805.

    Article  CAS  Google Scholar 

  • Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology 52: 725–749.

    Article  CAS  Google Scholar 

  • Giovannoni, J. J., D. DellaPenna, A. B. Bennett and R. L. Fischer (1989). Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1: 53–63.

    Article  CAS  Google Scholar 

  • Giovannoni, J. J., D. DellaPenna, A. Bennett and R. Fischer (1991). Polygalacturonase and tomato fruit ripening. Horticultural Reviews 13: 67–103.

    Google Scholar 

  • Glover, H. and C. Brady (1994). Purification of three pectin esterases from ripe peach fruit. Phytochemistry 37: 949–955.

    Article  CAS  Google Scholar 

  • Golden, K. D., M. A. John and E. A. Kean (1993). β-Galactosidase from Coffea arabica and its role in fruit ripening. Phytochemistry 34: 355–360.

    Article  CAS  Google Scholar 

  • Gonzalez-Bosch, C., D. A. Brummell and A. B. Bennett (1996). Differential expression of two endo-1,4-β-glucanase genes in pericarp and locules of wild-type and mutant tomato fruit. Plant Physiology 111: 1313–1319.

    CAS  Google Scholar 

  • Goodenough, P. W. and T. H. Thomas (1980). Comparative physiology of field-grown tomatoes during normal ripening or storage in controlled atmospheres. Annals of Applied Biology 94: 445–455.

    Article  CAS  Google Scholar 

  • Goodenough, P. W., G. A. Tucker, D. Grierson and T. H. Thomas (1982). Changes in colour, polygalacturonase, monosaccharides and organic acids during storage of tomatoes. Phytochemistry 21: 281–284.

    Article  CAS  Google Scholar 

  • Greve, L. C. and J. M. Labavitch (1991). Cell wall metabolism in ripening fruit. V. Analysis of cell wall synthesis in ripening tomato pericarp tissue using a D-[U-13C] glucose tracer and gas chromatography-mass spectrometry. Plant Physiology 97: 1456–1461.

    CAS  Google Scholar 

  • Gross, K. C. (1984). Fractionation and partial characterization of cell walls from normal and non-ripening mutant tomato fruit. Physiologia Plantarum 62: 25–32.

    CAS  Google Scholar 

  • Gross, K. C. (1990). Recent developments on tomato fruit softening. Postharvest News and Information 1: 109–112.

    Google Scholar 

  • Gross, K. C. and C. E. Sams (1984). Changes in cell wall neutral sugar composition during fruit ripening: A species survey. Phytochemistry 23: 2457–2461.

    CAS  Google Scholar 

  • Gross, K. C. and S. J. Wallner (1979). Degradation of cell wall polysaccharides during tomato fruit ripening. Plant Physiology 63: 117–120.

    CAS  Google Scholar 

  • Gross, K. C., D. A. Starrett and H.-J. Chen (1995). Rhamnogalacturonase, α-galactosidase and β-galactosidase: Potential roles in fruit softening. Acta Horticulturae 398: 121–129.

    CAS  Google Scholar 

  • Hackett, R. M., C.-W. Ho, Z. Lin, H. C. C. Foote, R. G. Fray and D. Grierson (2000). Antisense inhibition of the Nr gene restores normal ripening to the tomato Never-ripe mutant, consistent with the ethylene receptor-inhibition model. Plant Physiology 124: 1079–1085.

    Article  CAS  Google Scholar 

  • Hadfield, K. A. and A. B. Bennett (1998). Polygalacturonases: Many genes in search of a function. Plant Physiology 117: 337–343.

    CAS  Google Scholar 

  • Hadfield, K. A., J. K. C. Rose, D. S Yaver, R. M. Berka and A. B. Bennett (1998). Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly. Plant Physiology 117: 363–373.

    CAS  Google Scholar 

  • Hall, L. N., G. A. Tucker, C. J. S. Smith, C. F. Watson, G. B. Seymour, Y. Bundick, J. M. Boniwell, J. D. Fletcher, J. A. Ray, W. Schuch, C. Bird and D. Grierson (1993). Antisense inhibition of pectin esterase gene expression in transgenic tomatoes. Plant Journal 3: 121–129.

    CAS  Google Scholar 

  • Hamilton, A. J., G. W. Lycett and D. Grierson (1990). Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284–287.

    CAS  Google Scholar 

  • Harker, F. R., R. J. Redgwell and I. C. Hallett (1997). Texture of fresh fruit. Horticultural Reviews 20: 121–224.

    Google Scholar 

  • Harpster, M. H., D. A. Brummell and P. Dunsmuir (1998). Expression analysis of a ripening-specific, auxin-repressed endo-1,4-β-glucanase gene in strawberry. Plant Physiology 118: 1307–1316.

    Article  CAS  Google Scholar 

  • Harpster, M. H., K. Y. Lee and P. Dunsmuir (1997). Isolation and characterization of a gene encoding endo-β-1,4-glucanase from pepper (Capsicum annum L.). Plant Molecular Biology 33: 47–59.

    Article  CAS  Google Scholar 

  • Harriman, R. W., D. M. Tieman and A. K. Handa (1991). Molecular cloning of tomato pectin methylesterase gene and its expression in Rutgers, ripening inhibitor, nonripening and never ripe tomato fruits. Plant Physiology 97: 80–87.

    CAS  Google Scholar 

  • Harrison, E. P., S. J. McQueen-Mason and K. Manning (2001). Expression of six expansin genes in relation to extension activity in developing strawberry fruit. Journal of Experimental Botany 52: 1437–1446.

    CAS  Google Scholar 

  • Hatfield, R. and D. J. Nevins (1986). Characterization of the hydrolitic activity of avocado cellulase. Plant and Cell Physiology 27: 541–552.

    CAS  Google Scholar 

  • Hayashi, T., T. Takeda, K. Ogawa and Y. Mitsuishi (1994). Effects of the degree of polymerization on the binding of xyloglucans to cellulose. Plant and Cell Physiology 35: 893–899.

    CAS  Google Scholar 

  • Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 280: 309–316.

    CAS  Google Scholar 

  • Henrissat, B. and A. Bairoch (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 293: 781–788.

    CAS  Google Scholar 

  • Henrissat, B. and A. Bairoch (1996). Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal 316: 695–696.

    Google Scholar 

  • Heredia, A., R. Guillén, A. Jiménez and J. Fernández-Bolaños (1993). Activity of glycosidases during development and ripening of olive fruit. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung-A 196: 147–151.

    CAS  Google Scholar 

  • Huber, D. J. (1984). Strawberry fruit softening: The potential roles of polyuronides and hemicelluloses. Journal of Food Science 49: 1310–1315.

    CAS  Google Scholar 

  • Huber, D. J. and E. M. O’Donoghue (1993). Polyuronides in avocado (Persea americana) and tomato (Lycopersicon esculentum) fruits exhibit markedly different patterns of molecular weight downshifts during ripening. Plant Physiology 102: 473–480.

    CAS  Google Scholar 

  • Ishii, T., T. Matsunaga, P. Pellerin, M. A. O’Neil, A. Darvill and P. Albersheim (1999). The plant cell wall polysaccharide rhamnogalacturonan II self-assembles into a covalently cross-linked dimer. Journal of Biological Chemistry 274: 13098–13104.

    CAS  Google Scholar 

  • Jackman, R. L., H. J. Gibson and D. W. Stanley (1992). Effects of chilling on tomato fruit texture. Physiologia Plantarum 86: 600–608.

    Article  CAS  Google Scholar 

  • James, A. J., G. Dixon and O. Lamikanra (1999). Characterization of partially purified cellulase from muscadine grapes (Vitis rotundifolia Michx.). American Journal of Enology and Viticulture 50: 19–24.

    CAS  Google Scholar 

  • Jeong, J., D. J. Huber and S. A. Sargent (2002). Influence of 1-methylcyclopropene (1-MCP) on ripening and cell-wall matrix polysaccharides of avocado (Persea americana) fruit. Postharvest Biology and Technology 25: 241–256.

    Article  CAS  Google Scholar 

  • Jiménez-Bermúdez, S., J. Redondo-Nevado, J. Muñoz-Blanco, J. L. Caballero, J. M. López-Aranda, V. Valpuesta, F. Pllego-Alfaro, M. A. Quesada and J. A. Mercado (2002). Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiology 128: 751–759.

    Google Scholar 

  • Jones, L., G. B. Seymour and J. P. Knox (1997). Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-β-d-galactan. Plant Physiology 113: 1405–1412.

    CAS  Google Scholar 

  • Ju, Z., Y. Duan and Z. Ju (2000). Leatheriness and mealiness of peaches in relation to fruit maturity and storage temperature. Journal of Horticultural Science and Biotechnology 75: 86–91.

    CAS  Google Scholar 

  • Kader, A. A. (1992). Modified atmospheres during transport and storage. In A. A. Kader (ed.), Postharvest technology of horticultural crops. University of California, Division of Agriculture and Natural Resources, Publication 3311, California, USA, pp. 85–92.

    Google Scholar 

  • Kalaitzis, P., S.-B. Hong, T. Solomos and M. L. Tucker (1999). Molecular characterization of a tomato endo-β-1,4-glucanase gene expressed in mature pistils, abscission zones and fruit. Plant and Cell Physiology 40: 905–908.

    CAS  Google Scholar 

  • Kanellis, A. K. and P. Kalaitzis (1992). Cellulase occurs in multiple active forms in ripe avocado fruit mesocarp. Plant Physiology 98: 530–534.

    Article  CAS  Google Scholar 

  • Kanellis A. K., T. Solomos and A. K. Mattoo (1989a). Hydrolytic enzyme activities and protein pattern of avocado fruit ripened in air and in low oxygen, with and without ethylene. Plant Physiology 90: 259–266.

    CAS  Google Scholar 

  • Kanellis, A. K., T. Solomos, M. A. Mehta and A. K. Mattoo (1989b). Decreased cellulase activity in avocado fruit subjected to 2.5% O2 correlates with lower cellulase protein and gene transcript levels. Plant and Cell Physiology 30: 817–823.

    CAS  Google Scholar 

  • Kanellis, A. K., T. Solomos and K. A. Roubelakis-Angelakis (1991). Suppression of cellulase and polygalacturonase and induction of alcohol dehydrogenase isoenzymes in avocado fruit mesocarp subjected to low oxygen stress. Plant Physiology 96: 269–274.

    CAS  Google Scholar 

  • Kang, H.-C. and S.-H. Lee (2001). Characteristics of an α-galactosidase associated with grape flesh. Phytochemistry 58: 213–219.

    Article  CAS  Google Scholar 

  • Kang, I. K., S. G. Suh, K. C. Gross and J. K. Byun (1994). N-Terminal amino acid sequence of persimmon fruit β-galactosidase. Plant Physiology 105: 975–979.

    Article  CAS  Google Scholar 

  • Ketsa, S., S. Chidtragool, J. D. Klein and S. Lurie (1998). Effect of heat treatment on changes in softening, pectic substances and activities of polygaalcturonase, pectinesterase and β-galactosidase of ripening mango. Journal of Plant Physiology 153: 457–461.

    CAS  Google Scholar 

  • Kim, B. D. and C. B. Hall (1976). Firmness of tomato fruit subjected to low concentrations of oxygen. Hort Science 11: 466.

    CAS  Google Scholar 

  • Kim, J., K. C. Gross and T. Solomos (1991). Galactose metabolism and ethylene production during development and ripening of tomato fruit. Postharvest Biology and Technology 1: 67–80.

    Article  CAS  Google Scholar 

  • Kitagawa, Y., Y. Kanayama and S. Yamaki (1995). Isolation of β-galactosidase fractions from Japanese pear: Activity against native cell wall polysaccharides. Physiologia Plantarum 93: 545–550.

    Article  CAS  Google Scholar 

  • Klein, J. D. (1989). Ethylene biosynthesis in heat-treated apples. In H. Clijsters, M. de Proft, R. Marcelle and M. van Pouche (eds.), Biochemical and physiological aspects of ethylene production in lower and higher plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 184–190.

    Google Scholar 

  • Klee, H. J., M. B. Hayford, K. A. Kretzmer, G. F. Barry and G. M. Kishore (1991). Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3: 1187–1193.

    Article  CAS  Google Scholar 

  • Klein, J. D., J. D. Hanzon, P. L. Irwin, N. Ben-Shalom and S. Lurie (1995). Pectin esterase activity and pectin methyl esterification in heated ‘Golden Delicious’ apples. Phytochemistry 39: 491–494.

    Article  CAS  Google Scholar 

  • Kobayashi, M., T. Matoh and J. Azuma (1996). The chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiology 110: 1017–1020.

    CAS  Google Scholar 

  • Koch, J. L. and D. J. Nevins (1989). Tomato fruit cell wall. I. Use of purified tomato polygalacturonase and pectinmethylesterase to identify developmental changes in pectins. Plant Physiology 91: 816–822.

    CAS  Google Scholar 

  • Kondo, S. and C. Danjo (2001). Cell wall polysaccharide metabolism during fruit development in sweet cherry’ satohnishhiki’ as affected by gibberellic acid. Journal of the Japanese Society for Horticultural Science 70: 178–184.

    CAS  Google Scholar 

  • Kopeliovitch, E., Y. Mizrahi, H. D. Rabinowitch and N. Kedar (1980). Physiology of the tomato mutant alcobaca. Physiologia Plantarum 48: 307–311.

    CAS  Google Scholar 

  • Kotoujansky, A. (1987). Molecular genetics of pathogenesis by softrot Erwinias. Annual Review of Phytopathology 25: 405–430.

    Article  CAS  Google Scholar 

  • Kramer, M., R. A. Sanders, H. Bolkan, C. M. Waters, R. E. Sheehy and W. R. Hiatt (1992). Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: Processing, firmness and disease resistance. In A. Hiatt (ed.), Transgenic Plants: Fundamentals and Applications. Marcel Dekker, New York, USA, pp. 283–300.

    Google Scholar 

  • Kupferman, E. M. and W. H. Loescher (1980). Glycosidase activities and development of peach fruit mesocarp tissues. Journal of the American Society for Horticultural Science 105: 452–454.

    CAS  Google Scholar 

  • Langley, K. R., A. Martin, R. Stenning, A. J. Murray, G. E. Hobson, W. W. Schuch and C. R. Bird (1994). Mechanical and optical assessment of the ripening of tomato fruit with reduced polygalacturonase activity. Journal of the Science of Food and Agriculture 66: 547–554.

    CAS  Google Scholar 

  • Lashbrook, C. C., J. J. Giovannoni, B. D. Hall, R. L. Fischer and A. B. Bennett (1998). Transgenic analysis of tomato endo-β-1,4-glucanase gene function. Role of cel1 in floral abscission. Plant Journal 13: 303–310.

    Article  CAS  Google Scholar 

  • Lashbrook, C. C., C. Gonzalez-Bosch and A. B. Bennett (1994). Two divergent endo-β-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Plant Cell 6: 1485–1493.

    Article  CAS  Google Scholar 

  • Lazan, H., Z. M. Ali, K. S. Liang and K. L. Yee (1989). Poligalacturonase activity and variation in ripening of papaya fruit with tissue depth and heat treatment. Physiologia Plantarum 77: 93–98.

    CAS  Google Scholar 

  • Lazan, H., M. K. Selamat and Z. M. Ali (1995). β-Galactosidase, polygalacturonase and pectinesterase in differential softening and cell wall modification during papaya fruit ripening. Physiologia Plantarum 95: 106–112.

    Article  CAS  Google Scholar 

  • Lester, D. R., W. B. Sherman and B. J. Atwell (1996). Endopolygalacturonase and the Melting Flesh (M) locus in peach. Journal of the American Society for Horticultural Science 121: 231–235.

    CAS  Google Scholar 

  • Llop-Tous, I., E. Dominguez-Puigjaner, X. Palomer and M. Vendrell (1999). Characterization of two divergent endo-β-1,4-glucanase cDNA clones highly expressed in nonclimateric strawberry fruit. Plant Physiology 119: 1415–1421.

    Article  CAS  Google Scholar 

  • Lorences, E. P. and S. C. Fry (1993). Xyloglucan oligosaccharides with at least two α-d-xylose residues act as acceptor substrates for xyloglucan endotransglycosylase and promote the depolymerisation of xyloglucan. Physiologia Plantarum 88: 105–112.

    Article  CAS  Google Scholar 

  • Lu, C., Z. Zainal, G. A. Tucker and G. W. Lycett (2001). Developmental abnormalities and reduced fruit softening in tomato plants expressing an antisense Rab11 GTPase gene. Plant Cell 13: 1819–1833.

    CAS  Google Scholar 

  • Lurie, S. (1998). Postharvest heat treatments. Postharvest Biology and Technology 14: 257–269.

    Article  Google Scholar 

  • Lurie, S., A. Levin, L. C. Greve and J. M. Labavitch (1994). Pectic polymer changes in nectarines during normal and abnormal ripening. Phytochemistry 36: 11–17.

    Article  CAS  Google Scholar 

  • Maclachlan, G. and C. Brady (1992). Multiple forms of 1,4-β-glucanase in ripening tomato fruits include a xyloglucanase activatable by xyloglucan oligosaccharides. Australian Journal of Plant Physiology 19: 137–146.

    CAS  Google Scholar 

  • Maclachlan, G. and C. Brady (1994). Endo-1,4-β-glucanase, xyloglucanase, and xyloglucan endotransglycosylase activities versus potential substrates in ripening tomatoes. Plant Physiology 105: 965–974.

    CAS  Google Scholar 

  • Manning, K. (1998). Isolation of a set of ripening-related genes from strawberry: Their identification and possible relationship to fruit quality traits. Planta 205: 622–631.

    Article  CAS  Google Scholar 

  • Marangoni, A. G., R. L. Jackman and D. W. Stanley (1995). Chilling-associated softening of tomato fruit is related to increased pectinmethylesterase activity. Journal of Food Science 60: 1277–1281.

    CAS  Google Scholar 

  • McCann, M. C. and K. Roberts (1991). Architecture of the primary cell wall. In C. W. Lloyd (ed.), The cytoskeletal basis of plant growth and form. Academic Press, New York, USA, pp. 109–129.

    Google Scholar 

  • McDougall, G. J. and Fry, S. C. (1990). Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion. Plant Physiology 93: 1042–1048.

    CAS  Google Scholar 

  • McQueen-Mason, S. and D. J. Cosgrove (1994). Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proceedings of the National Academy of Sciences of the United States of America 91: 6574–6578.

    CAS  Google Scholar 

  • McQueen-Mason, S., D. M. Durachko and D. J. Cosgrove (1992). Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4: 1425–1433.

    Article  CAS  Google Scholar 

  • Medina-Escobar, N., J. Cárdenas, E. Moyano, J. L. Caballero and J. Muñoz-Blanco (1997). Cloning, molecular characterization and expression pattern of a strawberry ripening-specific cDNA with sequence homology to pectate lyase from higher plants. Plant Molecular Biology 34: 867–877.

    Article  CAS  Google Scholar 

  • Medina-Suárez, R., K. Manning, J. Fletcher, J. Aked, C. R. Bird and G. B. Seymour (1997). Gene expression in the pulp of ripening bananas. Plant Physiology 115: 453–461.

    Google Scholar 

  • Mitcham, E. J. and R. E. McDonald (1992). Effect of high temperature on cell wall modifications associated with tomato fruit ripening. Postharvest Biology and Technology 1: 257–264.

    Article  CAS  Google Scholar 

  • Mitcham, E. J., K. C. Gross and T. J. Ng (1989). Tomato fruit cell wall synthesis during development and senescence. In vivo radiolabeling of wall fractions using [14C] sucrose. Plant Physiology 89: 477–481.

    CAS  Google Scholar 

  • Mitcham, E. J., K. C. Gross and T. J. Ng (1991). Ripening and cell wall synthesis in normal and mutant tomato fruit. Phytochemistry 30: 1777–1780.

    Article  CAS  Google Scholar 

  • Nara, K., Y. Kato and Y. Motomura (2001). Involvement of terminal-arabinose and-galactose pectic compounds in mealiness apple fruit during storage. Postharvest Biology and Technology 22: 141–150.

    Article  CAS  Google Scholar 

  • Nishitani, K. and R. Tominaga (1992). Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. Journal of Biological Chemistry 267: 21058–21064.

    CAS  Google Scholar 

  • Nogata, Y., H. Ohta and A. G. J. Voragen (1993). Polygalacturonase in strawberry fruit. Phytochemistry 34: 617–620.

    Article  CAS  Google Scholar 

  • Nunan, K. J., C. Davies, S. P. Robinson and G. B. Fincher (2001). Expression patterns of cell wall-modifying enzymes during grape berry development. Planta 214: 257–264.

    Article  CAS  Google Scholar 

  • Nunan, K. J., I. M. Sims, A. Bacic, S. P. Robinson and G. B. Fincher (1998). Changes in cell wall composition during ripening of grape berries. Plant Physiology 118: 783–792.

    Article  CAS  Google Scholar 

  • O’Donoghue, E. M. and D. J. Huber (1992). Modification of matrix polysaccharides during avocado (Persea americana) fruit ripening: An asessment of the role of Cx-cellulase. Physiologia Plantarum 86: 33–42.

    Article  Google Scholar 

  • O’Donoghue, E. M., D. J. Huber, J. D. Timpa, G. W. Erdos and J. K. Brecht (1994). Influence of avocado (Persea americana) Cx-cellulase on the structural features of avocado cellulose. Planta 194: 573–584.

    Google Scholar 

  • Oeller, P. W., L. Wong, L. P. Taylor, D. A. Pike and A. Theologis (1991). Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 437–439.

    CAS  Google Scholar 

  • Ogura, N., H. Nakagawa and H. Takenhana (1975). Effect of storage temperature of tomato fruits on changes of their polygalacturonase and pectinesterase activities accompanied with ripening (Studies on the storage temperature of tomato fruits. Part II). Journal of the Agricultural Chemistry Society — Japan 49: 271–274.

    CAS  Google Scholar 

  • O’Neill, R. A., P. Albersheim and A. G. Darvill (1989). Purification and characterization of a xyloglucan oligosaccharide-specific xylosidase from pea seedlings. Journal of Biological Chemistry 260: 20430–20437.

    Google Scholar 

  • O’Neill, M. A., P. Albersheim and A. Darvill (1990). The pectic polysaccharides of primary cell walls. In P. M. Dey (ed.), Methods in plant biochemistry 2. Academic Press, London, UK, pp. 415–441.

    Google Scholar 

  • O’Neill, M. A., D. Warrenfeltz, K. Kates, P. Pellerin, T. Doci, A. G. Darvill and P. Albersheim (1996). Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently-linked by a borate ester. Journal of Biological Chemistry 271: 22923–22930.

    Article  Google Scholar 

  • Parkin, K. L., A. Marangoni, R. L. Jackman, R. Y. Yada and D. W. Stanley (1989). Chilling injury. A review of possible mechanisms. Journal of Food Biochemistry 13: 127–153.

    CAS  Google Scholar 

  • Paull, R. E. and N. J. Chen (1983). Postharvest variation in cell wall-degrading enzymes of papaya (Carica papaya L.) during fruit ripening. Plant Physiology 72: 382–385.

    CAS  Google Scholar 

  • Paull, R. E. and N. J. Chen (1990). Heat shock response in field grown ripening papaya fruit. Journal of the American Society for Horticultural Science 115: 623–631.

    Google Scholar 

  • Paull, R. E. and N. J. Chen (2000). Heat treatment and fruit ripening. Postharvest Biology and Technology 21: 21–37.

    Article  Google Scholar 

  • Percy, A. E., I. E. W. O’Brien, P. E. Jameson, L. D. Melton, E. A. MacRae and R. J. Redgwell (1996). Xyloglucan endotransglycosylase activity during fruit development and ripening of apple and kiwifruit. Physiologia Plantarum 96: 43–50.

    CAS  Google Scholar 

  • Pérez, S., K. Mazeau and C. Hervé du Penhoat (2000). The three-dimensional structures of the pectic polysaccharides. Plant Physiology and Biochemistry 38: 37–55.

    Google Scholar 

  • Pharr, D. M., H. N. Sox and Nesbitt, W. B. (1976). Cell wall-bound nitrophenylglycosidases of tomato fruits. Journal of the American Society for Horticultural Science 101: 397–400.

    CAS  Google Scholar 

  • Picton, S. and D. Grierson (1988). Inhibition of expression of tomato-ripening genes at high temperature. Plant Cell and Environment 11: 265–272.

    CAS  Google Scholar 

  • Pressey, R. (1983). β-Galactosidase in ripening tomatoes. Plant Physiology 71: 132–135.

    CAS  Google Scholar 

  • Pressey, R. (1984). Tomato α-galactosidases: Conversion of human type B erythrocytes to type O. Phytochemistry 23: 55–58.

    Article  CAS  Google Scholar 

  • Pressey, R. and J. K. Avants (1978). Difference in polygalacturonase composition of clingstone and freestone peaches. Journal of Food Science 43: 1415–1417, 1423.

    CAS  Google Scholar 

  • Pua, E.-C., C.-K. Ong, P. Liu and J.-Z. Liu (2001). Isolation and expression of two pectate lyase genes during fruit ripening of banana (Musa acuminata). Physiologia Plantarum 113: 92–99.

    Article  CAS  Google Scholar 

  • Ranwala, A. P., C. Suematsu and H. Masuda (1992). The role of β-galactosidases in the modification of cell wall components during muskmelon fruit ripening. Plant Physiology 100: 1318–1325.

    CAS  Google Scholar 

  • Redgwell, R. J. and S. C. Fry (1993). Xyloglucan endotransglycosylase activity increases during kiwifuit (Actinidia deliciosa) ripening. Implications for fruit softening. Plant Physiology 103: 1399–1406.

    CAS  Google Scholar 

  • Redgwell, R. J., M. Fischer, E. Kendal and E. A. MacRae (1997a). Galactose loss and fruit ripening: High-molecular-weight arabinogalactans in the pectic polysaccharides of fruit cell walls. Planta 203: 174–181.

    Google Scholar 

  • Redgwell, R. J., E. MacRae, I. Hallett, M. Fischer, J. Perry and R. Harker (1997b). In vivo and in vitro swelling of cell walls during fruit ripening. Planta 203: 162–173.

    CAS  Google Scholar 

  • Redgwell, R. J., L. D. Melton, D. J. Brasch and J. M. Coddington (1992). Structures of the pectic polysaccharides from the cell walls of kiwifruit. Carbohydrate Research 226: 287–302.

    Article  CAS  Google Scholar 

  • Redondo-Nevado, J., E. Moyano, N. Medina-Escobar, J. L. Caballero and J. Muñoz-Blanco (2001). A fruit-specific and developmentally regulated endopolygalacturonase gene from strawberry (Fragaria × ananassa cv. Chandler). Journal of Experimental Botany 52: 1941–1945.

    Article  CAS  Google Scholar 

  • Rogers, H. J., A. Harvey and D. M. Lonsdale (1992). Isolation and characterization of a tobacco gene with homology to pectate lyase which is specifically expressed during microsporogenesis. Plant Molecular Biology 20: 493–502.

    Article  CAS  Google Scholar 

  • Ronen, R., G. Zauberman, M. Akerman, A. Weksler, I. Rot and Y. Fuchs (1991). Xylanase and xylosidase activities in avocado fruit. Plant Physiology 95: 961–964.

    CAS  Google Scholar 

  • Rose, J. K. C. and A. B. Bennett (1999). Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: Parallels between cell expansion and fruit ripening. Trends in Plant Science 4: 176–183.

    Article  Google Scholar 

  • Rose, J. K. C., C. Catalá, D. A. Brummell, C. C. Lashbrook, Gonzalez-Bosch, C. and Bennett, A. B. (1997a). The tomato endo-β-1,4-glucanase gene family: Regulation by both ethylene and auxin. In A. K. Kanellis, C. Chang, H. Kende and D. Grierson (eds.), Biology and biotechnology of the plant hormone ethylene. Kluwer Academic Publishers, The Netherlands, pp. 197–205.

    Google Scholar 

  • Rose, J. K. C., D. J. Cosgrove, P. Albersheim, A. G. Darvill and A. B. Bennett (2000). Detection of expansin proteins and activity during tomato fruit ontogeny. Plant Physiology 123: 1583–1592.

    Article  CAS  Google Scholar 

  • Rose, J. K. C., K. A. Hadfield, J. M. Labavitch and A. B. Bennett (1998). Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiology 117: 345–361.

    Article  CAS  Google Scholar 

  • Rose, J. K. C., H. H. Lee, and A. B. Bennett (1997b). Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proceedings of the National Academy of Sciences of the United States of America 94: 5955–5960.

    CAS  Google Scholar 

  • Ross, G. S., R. J. Redgwell and E. A. MacRae (1993). Kiwifruit β-galactosidase: Isolation and activity against specific fruit cell-wall polysaccharides. Planta 189: 499–506.

    Article  CAS  Google Scholar 

  • Ross, G. S., T. Wegrzyn, E. A. MacRae and R. J. Redgwell (1994). Apple β-galactosidase. Activity against cell wall polysaccharides and characterization of a related cDNA clone. Plant Physiology 106: 521–528.

    Article  CAS  Google Scholar 

  • Ryu, S. B., B. H. Karlsson, M. Ôzgen and J. P. Palta (1997). Inhibition of phospholipase D by lysophosphatidylethanolamine, a lipid-derived senescence retardant. Proceedings of the National Academy of Sciences of the United States of America 94: 12717–12721.

    Article  CAS  Google Scholar 

  • Sajjaanantakul, T. and L. A. Pitifer (1991). Pectinesterase. In R. H. Walter (ed.), Chemistry and technology of pectin, Vol. 9. Academic Press, San Diego, CA, USA, pp. 135–164.

    Google Scholar 

  • Saha, B. C. (2000). α-L-Arabinofuranosidases: Biochemistry, molecular biology and application in biotechnology. Biotechnology Advances 18: 403–423.

    Article  CAS  Google Scholar 

  • Sampedro, J., C. Sieiro, G. Revilla, T. González-Villa and I. Zarra (2001). Cloning and expression pattern of a gene encoding an α-xylosidase against xyloglucan oligosaccharides from Arabidopsis. Plant Physiology 126: 910–920.

    Article  CAS  Google Scholar 

  • Schröder, R., R. G. Atkinson, G. Langenkamper and R. J. Redgwell (1998). Biochemical and molecular characterization of xyloglucan endotransglycosylase from ripe kiwi fruit. Planta 204: 242–251.

    Google Scholar 

  • Schuch, W., J. Kanczler, D. Robertson, G. Hobson, G. Tucker, D. Grierson, S. Bright and C. Bird (1991). Fruit quality characteristics of transgenic tomato fruit with altered polygalacturonase activity. HortScience 26: 1517–1520.

    CAS  Google Scholar 

  • Seymour, G. B. and Gross, K. C. (1996). Cell wall disassembly and fruit softening. Postharvest News and Information 7: 45N–52N.

    Google Scholar 

  • Seymour, G. B., I. J. Colquhoun, M. S. Du Pont, K. R. Parsley and R. R. Selvendran (1990). Composition and structural features of cell wall polysaccharides from tomato fruits. Phytochemistry 29: 725–731.

    Article  CAS  Google Scholar 

  • Sheehy, R. E., M. Kramer and W. R. Hiatt (1988). Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proceedings of the National Academy of Sciences of the United States of America 85: 8805–8809.

    CAS  Google Scholar 

  • Sisler, E. C. and Serek, M. (1997). Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiologia Plantarum 100: 577–582.

    Article  CAS  Google Scholar 

  • Sisler, E. C. and S. F. Yang (1984). Anti-ethylene effects of cis-2-butene and cyclic olefins. Phytochemistry 23: 2765–2768.

    CAS  Google Scholar 

  • Sitrit Y. and A. B. Bennett (1998). Regulation of tomato fruit polygalacturonase mRNA accumulation by ethylene: A re-examination. Plant Physiology 116: 1145–1150.

    Article  CAS  Google Scholar 

  • Smith, R. C. and S. C. Fry (1991). Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochemical Journal 279: 529–535.

    CAS  Google Scholar 

  • Smith D. L. and K. C. Gross (2000) A family of at least seven β-galactosidase genes is expressed during tomato fruit development. Plant Physiology 123: 1173–1183.

    Article  CAS  Google Scholar 

  • Smith D. L., D. A. Starrett and K. C. Gross (1998). A gene coding for tomato fruit β-galactosidase II is expressed during fruit ripening. Cloning, characterization, and expression pattern. Plant Physiology 117: 417–423.

    Article  CAS  Google Scholar 

  • Smith, C. J. S., C. F. Watson, P. C. Morris, C. R. Bird, G. B. Seymour, J. E. Gray, C. Arnold, G. A. Tucker, W. Schuch, S. Harding and D. Grierson (1990). Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Molecular Biology 14: 369–379.

    Article  CAS  Google Scholar 

  • Smith, C. J. S., C. F. Watson, J. Ray, C. R. Bird, P. C. Morris, W. Schuch and D. Grierson (1988). Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724–726.

    CAS  Google Scholar 

  • Somogyi, L. P. and R. J. Romani (1964). Irradiation-induced textural change in fruits and its relation to pectin metabolism. Journal of Food Science 29: 366–371.

    CAS  Google Scholar 

  • Sozzi, G. O. (2001). Cell wall glycosidases and their regulation during growth and ripening of climacteric fruits. Ph.D. Dissertation, University of Buenos Aires, Argentina, 117 pp.

    Google Scholar 

  • Sozzi, G. O., S. A. Camperi, O. Cascone and A. A. Fraschina (1998a). Galactosidases in tomato fruit ontogeny: Decreased galactosidase activities in antisense ACC synthase fruit during ripening and reversal with exogenous ethylene. Australian Journal of Plant Physiology 25: 237–244.

    Article  CAS  Google Scholar 

  • Sozzi, G. O., S. A. Camperi, A. A. Fraschina and O. Cascone (1998b). Assessment of different treatments for the concentration of three tomato fruit glycosidases from crude extracts. Biotechnology Techniques 12: 645–647.

    Article  CAS  Google Scholar 

  • Sozzi, G. O., O. Cascone and A. A. Fraschina (1996). Effect of a high-temperature stress on endo-β-mannanase and β-and β-galactosidase activities during tomato fruit ripening. Postharvest Biology and Technology 9: 49–63.

    Article  CAS  Google Scholar 

  • Sozzi, G. O., A. A. Fraschina, A. A. Navarro, O. Cascone, L. C. Greve and J. M. Labavitch (2002a). α-L-Arabinofuranosidase activity during development and ripening of normal and ACC synthase antisense tomato fruit. HortScience 37: 564–566.

    CAS  Google Scholar 

  • Sozzi, G. O., L. C. Greve, G. A. Prody and J. M. Labavitch (2002b). Gibberellic acid, synthetic auxins, and ethylene differentially modulate α-L-arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase tomato pericarp discs. Plant Physiology 129: in press.

    Google Scholar 

  • Sozzi, G. O., G. D. Trinchero and A. A. Fraschina (1999). Controlled-atmosphere storage of tomato fruit: Low oxygen or elevated carbon dioxide levels alter galactosidase activity and inhibit exogenous ethylene action. Journal of the Science of Food and Agriculture 79: 1065–1070.

    Article  CAS  Google Scholar 

  • Sozzi, G. O., G. D. Trinchero and A. A. Fraschina (2000). Ethylene and glycosidase promotion in breaker GA3− and IAA-treated tomato fruit (Lycopersicon esculentum Mill.). Journal of Plant Growth Regulation 19: 359–368.

    CAS  Google Scholar 

  • Sulová, Z., M. Takácčová, N. M. Steele, S. C. Fry and V. Farkaš (1998). Xyloglucan endotransglycosylase: Evidence for the existence of a relatively stable glycosyl-enzyme intermediate. Biochemical Journal 330: 1475–1480.

    Google Scholar 

  • Taiz, L. and W. A. Honigman (1976) Production of cell wall hydrolyzing enzymes by barley aleurone layers in response to gibberellic acid. Plant Physiology 58: 380–386.

    CAS  Google Scholar 

  • Tateishi, A., H. Inoue, H. Shiba and S. Yamaki (2001a). Molecular cloning of β-galactosidase from Japanese pear (Pyrus pyrifolia) and its gene expression with fruit ripening. Plant and Cell Physiology 42: 492–498.

    Article  CAS  Google Scholar 

  • Tateishi, A., H. Inoue and S. Yamaki (2001b). Fluctuations in activities of three β-galactosidase isoforms from ripening avocado (Persea americana) fruit and their different activities against its cell wall polysaccharides as substrates. Journal of the Japanese Society for Horticultural Science 70: 586–592.

    CAS  Google Scholar 

  • Tateishi, A., H. Inoue and S. Yamaki (2002). Cloning and expression of β-galactosidase cDNA related to softening of avocado (Persea americana) fruit. Journal of the Japanese Society for Horticultural Science 70: 48–55.

    Google Scholar 

  • Tateishi, A., Y. Kanayama and S. Yamaki (1996). α-L-Arabinofuranosidase from cell walls of Japanese pear fruits. Phytochemistry 42: 295–299.

    Article  CAS  Google Scholar 

  • Taylor, M. A., E. Rabe, M. C. Dodd and G. Jacobs (1994). Effect of storage regimes on pectolytic enzymes, pectic substances, internal conductivity and gel breakdown in cold stored’ songold’ plums. Journal of Horticultural Science 69: 527–534.

    CAS  Google Scholar 

  • Thakur, B. R., R. K. Singh, D. M. Tieman and A. K. Handa (1996). Tomato product quality from transgenic fruits with reduced pectin methylesterase. Journal of Food Science 61: 85–108.

    Google Scholar 

  • Theologis, A., P. W. Oeller, L-M. Wong, W. H. Rottmann and D. M. Gantz (1993). Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex developmental process. Development in Genetics 14: 282–295.

    CAS  Google Scholar 

  • Tieman, D. M. and A. K. Handa (1994). Reduction in pectin methylesterase activity modifies tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Physiology 106: 429–436.

    CAS  Google Scholar 

  • Tieman, D. M., R. W. Harriman, G. Ramamohan and A. K. Handa (1992). An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. Plant Cell 4: 667–679.

    Article  CAS  Google Scholar 

  • Tieman, D. M., K. D. Kausch, D. M. Serra and A. K. Handa (1995). Field performance of transgenic tomato with reduced pectin methylesterase activity. Journal of the American Society for Horticultural Science 120: 765–770.

    CAS  Google Scholar 

  • Tigchelaar, E., W. McGlasson and R. Buescher (1978). Genetic regulation of tomato fruit ripening. Hort Science 13: 508–513.

    CAS  Google Scholar 

  • Trainotti, L., R. Spinello, A. Piovan, S. Spolaore and G. Casadoro (2001). β-Galactosidase with a lectin-like domain are expressed in strawberry. Journal of Experimental Botany 52: 1635–1645.

    Article  CAS  Google Scholar 

  • Trainotti, L., S. Spolaore, A. Pavanello, B. Baldan and G. Casadoro (1999). A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Molecular Biology 40: 323–332.

    Article  CAS  Google Scholar 

  • Trinchero, G. D., G. O. Sozzi, A. M. Cerri, F. Vilella and A. A. Fraschina (1999). Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biology and Technology 16: 139–145.

    Article  CAS  Google Scholar 

  • Tucker, M. L., M. L. Durbin, M. T. Clegg and L. N. Lewis (1987). Avocado cellulase: Nucleotide sequence of a putative full-length cDNA clone and evidence for a small gene family. Plant Molecular Biology 9: 197–203.

    Article  CAS  Google Scholar 

  • Turcich, M. P., D. A. Hamilton and J. P. Mascarenhas (1993). Isolation and characterization of pollen-specific maize genes with sequence homology to ragweed allergens and pectate lyases. Plant Molecular Biology 23: 1061–1065.

    Article  CAS  Google Scholar 

  • von Mollendorff, L. J. and O. T. de Villiers (1988). The role of pectolytic enzymes in the development of woolliness in peaches. Journal of Horticultural Science 63: 53–58.

    Google Scholar 

  • Vrebalov, J., D. Ruezinsky, V. Padmanabhan, R. White, D. Medrano, R. Drake, W. Schuch and J. Giovannoni (2002). A MADS-box gene necessary for fruit ripening at the tomato Ripening-Inhibitor (Rin) Locus. Science 296: 343–346.

    Article  CAS  Google Scholar 

  • Wallner, S. J. and H. L. Bloom (1977). Characteristics of tomato cell wall degradation in vitro. Implications for the study of fruit-softening enzymes. Plant Physiology 60: 207–210.

    CAS  Google Scholar 

  • Wallner, S. J. and J. E. Walker (1975). Glycosidases in cell wall-degrading extracts of ripening tomato fruits. Plant Physiology 55: 94–98.

    Article  CAS  Google Scholar 

  • Wang, C. Y. (1989). Chilling injury of fruits and vegetables. Food Reviews International 5: 209–236.

    Article  CAS  Google Scholar 

  • Watkins, C. B., J. M. Haki and C. Frenkel (1988). Activities of polygalacturonase, α-d-mannosidase, and α-d-and α-d-galactosidases in ripening tomato. Hort Science 23: 192–194.

    CAS  Google Scholar 

  • Wiersma, P. A. and B. R. Fils-Lycaon (1996). Molecular cloning and nucleotide sequence (accesion no. U39228) of a beta-glucosidase cDNA from ripening sweet cherry fruit. Plant Physiology 110: 337.

    Google Scholar 

  • Willats, W. G. T., L. McCartney, W. Mackie and J. P. Knox (2001). Pectin: Cell biology and prospects for functional analysis. Plant Molecular Biology 47: 9–27.

    Article  CAS  Google Scholar 

  • Wing, R. A., J. Yamaguchi, S. K. Larabell, V. M. Ursin and S. McCormick (1989). Molecular and genetic characterization of two-pollen expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Molecular Biology 14: 17–28.

    Google Scholar 

  • Woolley, L. C., D. J. James and K. Manning (2001). Purification and properties of an endo-β-1,4-glucanase from strawberry and down-regulation of the corresponding gene, cell. Planta 214: 11–21.

    CAS  Google Scholar 

  • Wu, Q., M. Szakacs-Dobozi, M. Hemmat and G. Hrazdina (1993). Endopolygalacturonase in apples (Malus domestica) and its expression during fruit ripening. Plant Physiology 102: 219–225.

    CAS  Google Scholar 

  • Yang, R. F., T. S. Cheng and R. L. Shewfelt (1990). The effect of high temperature and ethylene treatment on the ripening of tomatoes. Journal of Plant Physiology 136: 368–372.

    CAS  Google Scholar 

  • Yoshida, O., H. Nakagawa, N. Ogura and Y. Sato (1984). Effect of heat treatment on the development of polygalacturonase activity in tomato fruit during ripening. Plant and Cell Physiology 25: 505–509.

    CAS  Google Scholar 

  • Yoshioka, H., Y. Kashimura and K. Kaneko (1995). β-d-Galactosidase and α-l-arabinofuranosidase activities during the softening of apples. Journal of the Japanese Society for Horticultural Science 63: 871–878.

    CAS  Google Scholar 

  • Zhao, M., J. Moy and R. E. Paull (1996). Effect of gamma-irradiation on ripening papaya pectin. Postharvest Biology and Technology 8: 209–222.

    Article  CAS  Google Scholar 

  • Zhou, H. W., S. Lurie, R. Ben-Arie, L. Dong, S. Burd, A. Weksler and A. Lers (2001). Intermittent warming of peaches reduces chilling injury by enhancing ethylene production and enzymes mediated by ethylene. Journal of Horticultural Science and Biotechnology 76: 620–628.

    CAS  Google Scholar 

  • Zhou, H. W., S. Lurie, A. Lers, A. Khatchitski, L. Sonego and R. Ben Arie (2000). Delayed storage and controlled atmosphere storage of nectarines: Two strategies to prevent woolliness. Postharvest Biology and Technology 18: 133–141.

    Article  Google Scholar 

  • Zhou, H. W., L. Sonego, R. Ben-Arie and S. Lurie (1999). Analysis of cell wall components in juice of ‘Flavortop’ nectarines during normal ripening and woolliness development. Journal of the American Society for Horticultural Science 124: 424–429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sozzi, G.O. (2004). Strategies for the Regulation of Postharvest Fruit Softening by Changing Cell Wall Enzyme Activity. In: Dris, R., Jain, S.M. (eds) Production Practices and Quality Assessment of Food Crops. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2535-1_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2535-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1701-8

  • Online ISBN: 978-1-4020-2535-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics