Skip to main content

On the Quantization of the Electronic Non-Adiabatic Coupling Terms: The H+H2 System as a Case Study

  • Conference paper
Theory of Chemical Reaction Dynamics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 145))

  • 1245 Accesses

Abstract

In this article we present a survey of the various conical intersections which govern potential transitions between the three lower electronic states for the title molecular system. It was revealed that these three states, for a given fixed HH distance, RHH, usually form four conical intersections: two between the two lower states and two between the two upper states. One of the four is the well-known equilateral D3h ci and the others are, essentially, C2v cis: One of them is located on the symmetry line perpendicular to the HH axis (like the D3h ci) and the other two are located on both sides of this symmetry line and in this way form the twin C2v cis. The study was carried out for two RHH-values, namely, RHH=0.74 and 0.4777 Å.

The second subject treated here, in some detail, is related to the possible quantization of the non-adiabatic coupling matrix. We show that in general for small enough regions surrounding a particular ci the two-state quantization is fulfilled. However, increasing the region surrounded by the contour shows larger and larger deviations from the two-state quantization but then the three-state quantization shows relevance as expected from pure theoretical considerations (Baer and Alijah, Chem. Phys. Lett. 319, 489 (2000)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Born and J.R. Oppenheimer, Ann. Phys. (Leipzig), 84, 457 (1927)

    CAS  Google Scholar 

  2. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, (Oxford University, New York, 1954)

    Google Scholar 

  3. H. Hellmann, Einfuhrung in die Quantenchemie, Franz Deutiche, Leipzig, 1937; R. Feynman, Phys. Rev. 56, 340 (1939)

    Google Scholar 

  4. M. Baer and G.D Billing (Eds.), The Role of Degenerate States in Chemistry, Adv. Chem. Phys., Vol. 124 (John Willey & Sons Hoboken, N.J., 2002)

    Google Scholar 

  5. H.C. Longuet-Higgins, U. Opik, M.H.L. Pryce and R.A. Sack, Proc. R. Soc. Lond. A 244, 1 (1958); H.C. Longuet-Higgins, Adv. Spectrosc. 2, 429 (1961); G. Herzberg and H.C. Longuet-Higgins, Discuss. Faraday Soc. 35, 77 (1963); H.C. Longuet-Higgins, Proc. R. Soc. London Ser. A 344, 147 (1975)

    Google Scholar 

  6. M.S. Child, in The Role of Degenerate States in Chemistry, Eds. M. Baer and G.D. Billing, Adv. Chem. Phys., 124, Chap.1 (2002)

    Google Scholar 

  7. C. A. Mead, Chem. Phys. 49, 23 (1980)

    CAS  Google Scholar 

  8. (a) M. Baer, Chem. Phys. Lett. 35, 112 (1975); (b) M. Baer, Molec. Phys., 40, 1011 (1980)

    Article  CAS  Google Scholar 

  9. (a) M. Baer, Chem. Phys, 259, 123 (2000); (b) ibid. Phys. Reps. 358, 75 (2002); (c) ibid. Ref. 4, Chap.2

    Article  CAS  Google Scholar 

  10. M. Baer and A. Alijah, Chem. Phys. Lett., 319, 489 (2000); (b) M. Baer, J. Phys. Chem., A 104, 3181 (2000)

    Article  CAS  Google Scholar 

  11. M. Baer, S.H. Lin, A. Alijah, S. Adhikari and G.D. Billing, Phys. Rev. A, 62, 032506-1 (2000)

    Google Scholar 

  12. R. Englman, The Jahn-Teller Effect in Molecules and Crystals (Wiley (Interscience), New York, 1972)

    Google Scholar 

  13. B. Bersuker and V.Z. Polinger, Vibronic Interactions in Molecules and Crystals (Springer, N.Y., 1989)

    Google Scholar 

  14. I. B. Bersuker Chem. Rev. 101, 1067 (2001).

    Article  CAS  Google Scholar 

  15. G. Halász, A. Vibók, A.M., Mebel and M. Baer, J. Chem. Phys. 118, 3052 (2003)

    Google Scholar 

  16. A. Vibók, G. Halász, T. Vertesi, S. Suhai, M. Baer and J.P. Toennies (submitted for publication)

    Google Scholar 

  17. W. Lichten, Phys. Rev., 164, 131 (1967); F. T. Smith, Phys. Rev. 179, 112 (1967)

    Article  CAS  Google Scholar 

  18. (a) A. Kuppermann, in Dynamics of Molecules and Chemical Reactions, Eds. R.E. Wyatt, R.E. and J.Z.H. Zhang (Marcel, Dekker, Inc., N.Y., 1996) p. 411; (b) V. Sidis, in State-to-State Ion Molecule Reaction Dynamics Eds. M. Baer, M. and C.Y. Ng, (Adv. Chem. Phys. 82, 73 (1992)), Vol. II; (c) T. Pacher, L.S. Cederbaum and H. Köppel, Adv. Chem. Phys. 84,293 (1993); (d) W. Domcke and G. Stock, Adv. Chem. Phys., 100,1 (1997); (e) M. Baer, in: Theory of Chemical Reaction Dynamics, Ed. M. Baer (CRC, Boca Raton, 1985), Vol. II, Chap. 4

    Google Scholar 

  19. (a) F. Rebentrost and W.A. Lester, J. Chem. Phys, 64, 3879 (1976); (b) F. Rebentrost, in Theoretical Chemistry: Advances and Perspectives, D. Henderson and H. Eyring, eds. (Academic Press, New York, 1981), Vol. VIb; (c) A. Macias and A. Riera, J. Phys. B 11, L489 (1978); (d) A. Macias and A. Riera, Int. J. Quantum Chem. 17,181 (1980);(e) C. Petrongolo, G. Hirsch, and R. Buenker, Molec. Phys., 70, 825; 835, (1990)

    CAS  Google Scholar 

  20. G.D. Billing, M. Baer and A.M. Mebel, Chem. Phys. Lett. 372, 1 (2003)

    Article  CAS  Google Scholar 

  21. Yang, C.N. and Mills, R.L., Phys. Rev. 96, 191 (1954)

    Article  CAS  Google Scholar 

  22. M. Baer, Chem. Phys. Lett. 329,450 (2000).

    Article  CAS  Google Scholar 

  23. R. Baer, J. Chem. Phys, 117, 7405 (2002).

    Article  CAS  Google Scholar 

  24. T. Vertesi, A. Vibók, G. Halász, A. Yahalom, R. Englman and M. Baer, J. Phys. Chem. A, (in press)

    Google Scholar 

  25. D. Bohm, Quantum Theory (Dover Publications, Inc. 1989, N.Y.) p. 41

    Google Scholar 

  26. R. Krishnan, M. Frisch and J.A. Pople, J. Chem. Phys. 72, 4244 (1980)

    CAS  Google Scholar 

  27. D.F. Feller and K. Ruedenberg, Theor. Chim. Acta 52, 231 (1978)

    Google Scholar 

  28. A. Mebel, A. Yahalom, R. Englman and M. Baer, J. Chem. Phys. 115, 3673 (2001).

    Article  CAS  Google Scholar 

  29. M. Baer J. Phys. Chem. A 105, 2198 (2001)

    CAS  Google Scholar 

  30. A.M., Mebel, G. Halász, A. Vibók, A. Alijah, and M. Baer, J. Chem. Phys. 117, 991 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Halász, G., Vibók, Á., Mebel, A.M., Baer, M. (2004). On the Quantization of the Electronic Non-Adiabatic Coupling Terms: The H+H2 System as a Case Study. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_3

Download citation

Publish with us

Policies and ethics