Skip to main content
Log in

Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We obtained an approximate solution of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential model, within the framework of Nikiforov–Uvarov method. The bound state energy eigenvalues for N2, CO, NO, and CH diatomic molecules were computed for various vibrational and rotational quantum numbers. Special cases were considered when the potential parameters were altered, resulting into modified Kratzer potential, screened Coulomb potential, and standard Coulomb potential, respectively. Their energy eigenvalues expressions and numerical computations agreed with the already existing literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H Hassanabadi, E Magshoodi and S Zarrinkamar Few-Body Syst.53 271 (2012)

    Article  ADS  Google Scholar 

  2. R Sever, C Tezan, O Yesiltas and M Bucurgat Int. J. Theor. Phys.49 2243 (2008)

    Article  Google Scholar 

  3. A N Ikot, L E Akpabio and E B Umoren J. Sci. Res.3 25 (2011)

    Article  Google Scholar 

  4. O Bayrak and I Boztosun Phys. Scri.76 92 (2007)

    Article  ADS  Google Scholar 

  5. H Egrifes, D Demirhan and F Buyukkilic Phys. Lett. A.275 229 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. S M Ikhdair and R Sever Ann. Phys.18 189 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. C Onate, K Oyewumi and B Falaye Few-Body Syst.55 61 (2014)

    Article  ADS  Google Scholar 

  8. M Hamzavi, K E Thylwe and A Rajabi Commun. Theor. Phys.60 1 (2013)

    Article  ADS  Google Scholar 

  9. S M Ikhdair and B J Falaye Chem. Phys.421 84 (2013)

    Article  Google Scholar 

  10. C Y Chen, F L Lu and D S Sun Cent. Eur. J. Phys.6 884 (2008)

    Google Scholar 

  11. C Pekeris Phys. Rev.45 98 (1934)

    Article  ADS  Google Scholar 

  12. W C Qiang and S H Dong Phys. Lett. A.363 169 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. C Berkdemir and J Han Chem. Phys. Lett.409 203 (2005)

    Article  ADS  Google Scholar 

  14. S H Dong Factorization Method in Quantum Mechanics (Armsterdam: Springer) (2007)

    Book  MATH  Google Scholar 

  15. J Y Liu, G D Zhang and C S Jia Phys. Lett. A.377 1444 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. H M Tang, G C Liang, L H Zhang, F Zhao and C S Jia Can. J. Chem.92 341 (2014)

    Article  Google Scholar 

  17. C S Jia and Y Jia Eur. Phys. J. D.71 3 (2017)

    Article  ADS  Google Scholar 

  18. A N Ikot, H P Obong, T M Abbey, S Zare, M Ghafourian and H Hassanabadi Few-Body Systems (Berlin: Springer) (2016)

    Google Scholar 

  19. C A Onate, M C Onyeaju, A N Ikot and J O Ojonubah Chin. J. Phys.000 1 (2016)

    Google Scholar 

  20. C A Onate, A N Ikot, M C Onyeaju and M E Udoh Karbala Int. J. Modern Sci.3 1 (2017)

    Article  Google Scholar 

  21. A N Ikot, O A Awoga, A D Antia, H Hassanabadi and E Maghsodi Few-Body Syst.54 2041 (2013)

    Article  ADS  Google Scholar 

  22. H Ciftci, R L Hall and N Saad J. Phys. A: Math. Gen.36 11807 (2003)

    Article  ADS  Google Scholar 

  23. B J Falaye Cent. Eur. J. Phys.10 960 (2012)

    Google Scholar 

  24. M R Setare and E Karimi Phys. Scri.75 90 (2007)

    Article  ADS  Google Scholar 

  25. W C Qiang and S H Dong Eur. Phys. Lett.45 10003 (2010)

    Article  Google Scholar 

  26. S M Ikhdair and R Sever J. Math. Chem.45 1137 (2009)

    Article  MathSciNet  Google Scholar 

  27. G Chen Phys. Lett. A.326 55 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. C Berkdemir J. Math. Phys.46 13 (2009)

    MathSciNet  Google Scholar 

  29. C Tezcan and R Sever Int. J. Theor. Phys.48 337 (2009)

    Article  Google Scholar 

  30. A N Ikot, I O Akpan, T M Abbey and H Hassanabadi Commun. Theor. Phys.65 569 (2016)

    Article  ADS  Google Scholar 

  31. C A Onate and J O A Idiodi Chin. J. Phys.53 7 (2015)

    Google Scholar 

  32. A N Ikot, O A Awoga, H Hassanabadi and E Maghsodi Commun. Theor. Phys.61 457 (2014)

    Article  Google Scholar 

  33. B J Falaye, K J Oyewumi and M Abbas Chin. Phys. B22 110301 (2013)

    Article  ADS  Google Scholar 

  34. A D Antia, A N Ikot, H Hassanabadi and E Maghsodi Indian J. Phys.87 1133 (2013)

    Article  ADS  Google Scholar 

  35. A Kratzer Z. Phys.3 289 (1920)

    Article  ADS  Google Scholar 

  36. J Sadeghi Acta Phys. Pol.112 23 (2007)

    Article  ADS  Google Scholar 

  37. R J Le Roy and R B Bernstein J. Chem. Phys.52 3869 (1970)

    Article  ADS  Google Scholar 

  38. O Bayrak, I Boztosun and H Cifti Int. J. Quant. Chem.107 540 (2007)

    Article  ADS  Google Scholar 

  39. N Saad, R J Hall and H Cifti Cent. Eur. J. Phys.6 717 (2008)

    Google Scholar 

  40. H Hassanabadi, H Rahimov and S Zarrinkamar Adv. High Energy Phys.458087 1 (2011)

    Article  Google Scholar 

  41. S Dong, G H Sun and S H Dong Int. J. Mod. Phys. E22 1350036 (2013)

    Article  ADS  Google Scholar 

  42. S M Ikhdair and R Sever J. Mol. Struct: Theochem.809 103 (2007)

    Article  Google Scholar 

  43. E Z Liverts, E G Drukarev, R Krivec and V B Mandelzweig Few-Body Syst.44 367 (2008)

    Article  ADS  Google Scholar 

  44. E Maghsoodi, H Hassanabadi and O Aydodu Phys. Scri.86 015005 (2012)

    Article  ADS  Google Scholar 

  45. J P Edwards, U Gerber, C Schubert, M A Trejo and A Weber Prog. Theor. Exp. Phys.0873A01 1 (2017)

    Google Scholar 

  46. C A Onate and J O Ojonubah J. Theor. Appl. Phys.10 21 (2016)

    Article  ADS  Google Scholar 

  47. H Hamzavi, M Movahedi, K E Thylwe and A A Rajabi Chin. Phys. Lett.29 080302 (2012)

    Article  ADS  Google Scholar 

  48. A N Ikot, E O Chukwuocha, M C Onyeaju, C N Onate, B I Ita and M E Udoh Pramana J. Phys.90 22 (2018)

    Article  ADS  Google Scholar 

  49. L H Zhang, X P Li and C S Jia Int. J. Quant. Chem.111 1870 (2011)

    Article  Google Scholar 

  50. R L Greene and C Aldrich Phys. Rev. A14 2363 (1976)

    Article  ADS  Google Scholar 

  51. M Abramowitz and I A Stegun Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (New York: Dover) (1964)

    MATH  Google Scholar 

  52. C Birkdemir Application of the Nikiforov–Uvarov Method in Quantum Mechanics Theor. Concept Quant. Mech. (ed.) M R Pahlavani Chapter 11 (2012)

  53. C Berkdemir, A Berkdemir and J Han Chem. Phys. Lett.417 326 (2006)

    Article  ADS  Google Scholar 

  54. H Hassanabadi, E Maghsoodi, S Zarrinkamar and H Rahimov Chin. Phys. B12 120302 (2012)

    Article  Google Scholar 

  55. E Maghsoodi, H Hassanabadi, H Rahimov and S Zarrinkamar Chin. Phys. C37 043105 (2013)

    Article  ADS  Google Scholar 

  56. H Hassanabadi, E Maghsoodi and S Zarrinkamar Chin. Phys. C37 113104 (2013)

    Article  ADS  Google Scholar 

  57. U S Okorie, E E Ibekwe, A N Ikot, M C Onyeaju and E O Chukwuocha J. Kor. Phys. Soc.73 1211 (2018)

    Article  ADS  Google Scholar 

  58. U S Okorie, A N Ikot, M C Onyeaju and E O Chukwuocha Rev. Mex. de Fis.64 608 (2018)

    Article  Google Scholar 

  59. U S Okorie, A N Ikot, M C Onyeaju and E O Chukwuocha J. Mol. Mod.24 289 (2018)

    Article  Google Scholar 

  60. X L Peng, R Jiang, C S Jia, L H Zhang and Y L Zhao Chem. Eng. Sci.190 122 (2018)

    Article  Google Scholar 

  61. C S Jia, C W Wang, L H Zhang, X L Peng, H M Tang, J Y Liu, Y Xiong and R Zeng Chem. Phys. Lett.692 57 (2018)

    Article  ADS  Google Scholar 

  62. R Jiang, C S Jia, Y Q Wang, X L Peng and L H Zhang Chem. Phys. Lett.715 186 (2019)

    Article  ADS  Google Scholar 

  63. C S Jia, C W Wang, L H Zhang, X L Peng, H M Tang and R Zeng Chem. Eng. Sci.183 26 (2018)

    Article  Google Scholar 

  64. C S Jia, R Zeng, X L Peng, L H Zhang and Y L Zhao Chem. Eng. Sci.190 1 (2018)

    Article  Google Scholar 

  65. A F Nikiforov, V B Uvarov Special Functions of Mathematical Physics (ed.) A Jaffe (Germany: Birkhauser Verlag Basel) p 317 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Okorie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Review of Nikiforov–Uvarov (NU) method

Appendix: Review of Nikiforov–Uvarov (NU) method

The NU method was proposed by Nikiforov and Uvarov [65] to transform Schrodinger-like equations into a second-order differential equation via a coordinate transformation \( s = s(r), \) of the form

$$ \psi^{\prime\prime}(s) + \frac{{\tilde{\tau }(s)}}{\sigma (s)}\psi^{\prime}(s) + \frac{{\tilde{\sigma }(s)}}{{\sigma^{2} (s)}}\psi (s) = 0 $$
(41)

where \( \tilde{\sigma }(s),\,\,\sigma (s) \) are polynomials, at most second degree and \( \tilde{\tau }(s) \) is a first-degree polynomial. The exact solution of Eq. (41) can be obtained by using the transformation

$$ \psi (s) = \varPhi (s)y_{n} (s) $$
(42)

This transformation reduces Eq. (41) into a hypergeometric-type equation of the form

$$ \sigma (s)y^{\prime\prime}_{n} (s) + \tau (s)y^{\prime}_{n} (s) + \lambda y_{n} (s) = 0 $$
(43)

The function \( \varPhi (s) \) can be defined as the logarithm derivative [65]

$$ \frac{{\varPhi^{\prime}(s)}}{\varPhi (s)} = \frac{\pi (s)}{\sigma (s)} $$
(44)

with \( \pi (s) \) being at most a first-degree polynomial. The second part of \( \psi (s) \) being \( y_{n} (s) \) in Eq. (42) is the hypergeometric function with its polynomial solution given by Rodrigues relation

$$ y_{n} (s) = \frac{{B_{n} }}{\rho (s)}\frac{{{\text{d}}^{n} }}{{{\text{d}}s^{n} }}\left[ {\sigma^{n} (s)\rho (s)} \right] $$
(45)

Here, \( B_{n} \) is the normalization constant and \( \rho (s) \) is the weight function which must satisfy the condition

$$ \frac{\text{d}}{{{\text{d}}s}}\left[ {\sigma (s)\rho (s)} \right] = \tau (s)\rho (s) $$
(46)

with

$$ \tau (s) = \tilde{\tau }(s) + 2\pi (s) $$
(47)

It should be noted that the derivative of \( \tau (s) \) with respect to s should be negative. The eigenfunctions and eigenvalues can be obtained using the definition of the following function \( \pi (s) \) and parameter \( \lambda \), respectively:

$$ \pi (s) = \frac{{\sigma^{\prime}(s) - \tilde{\tau }(s)}}{2} \pm \sqrt {\left( {\frac{{\sigma^{\prime}(s) - \tilde{\tau }(s)}}{2}} \right)^{2} - \tilde{\sigma }(s) + k\sigma (s)} $$
(48)

and

$$ \lambda = k + \pi^{\prime}(s) $$
(49)

The value of \( k \) can be obtained by setting the discriminant of the square root in Eq. (48) equal to zero. As such, the new eigenvalue equation can be given as

$$ \lambda + n\tau^{\prime}(s) + \frac{n(n - 1)}{2}\sigma^{\prime\prime}(s) = 0,\,\,(n = 0,1,2, \ldots ) $$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edet, C.O., Okorie, U.S., Ngiangia, A.T. et al. Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential. Indian J Phys 94, 425–433 (2020). https://doi.org/10.1007/s12648-019-01477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01477-9

Keywords

PACS Nos.

Navigation