Skip to main content

BKCa-Channel Structure and Function

  • Chapter
Biological Membrane Ion Channels

Abstract

Among ion channels, the large-conductance Ca2+-activated K+ channel (BKCa channel) is in many ways unique. It has a very large single-channel conductance—ten times that of most vertebrate K+ channels—and yet it maintains strict K+ selectivity. It senses as little as 200 nM Ca2+, but it contains no consensus Ca2+-binding motifs, and it is the only channel to be activated by both intracellular Ca2+ and membrane voltage. In fact, there is a synergy between these stimuli such that the higher the internal Ca2+ concentration ([Ca2+]), the smaller the depolarization needed to activate the channel. Furthermore, the BKCa channel has its own brand of auxiliary subunits that profoundly affect gating. In this chapter, I will discuss what is understood about the origins of these properties in terms of allosteric models and channel structure. At the outset, however, I should say that there is not yet a crystal structure of the BKCa channel or any of its components, so much of the current thinking about BKCa-channel structure relies on analogy to other channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adelman, J.P. et al. 1992. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9:209–216.

    Article  Google Scholar 

  • Aggarwal, S.K., and R. MacKinnon. 1996. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16:1169–1177.

    Article  Google Scholar 

  • Aldrich, R.W. 2001. Fifty years of inactivation. Nature 411:643–644.

    Article  ADS  Google Scholar 

  • Atkinson, N.S., G.A. Robertson, and B. Ganetzky. 1991. A.component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253:551–555.

    Article  ADS  Google Scholar 

  • Bao, L., and D.H. Cox. 2005. Gating and ionic currents reveal how the BKCa channel ’s Ca2+ sensitivity is enhanced by its beta1 subunit. J. Gen. Physiol. 126:393–412.

    Article  Google Scholar 

  • Bao, L., C. Kaldany, E.C. Holmstrand, and D.H. Cox. 2004. Mapping the BKCa channel’s Ca2+ bowl: Side-chains essential for Ca2+ sensing. J. Gen. Physiol. 123:475–489.

    Article  Google Scholar 

  • Bao, L., A.M. Rapin, E.C. Holmstrand, and D.H. Cox. 2002. Elimination of the BK(Ca) channel’s high-affinity Ca(2+) sensitivity. J. Gen. Physiol. 120:173–189.

    Article  Google Scholar 

  • Behrens, R. et al. 2000. hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Lett. 474:99–106.

    Article  Google Scholar 

  • Bezanilla, F. 2005. Voltage-gated ion channels. IEEE Trans. Nanobiosci. 4:34–48.

    Article  Google Scholar 

  • Bhattacharjee, A. et al. 2003. Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J. Neurosci. 23:11681–11691.

    MathSciNet  Google Scholar 

  • Bian, S., I. Favre, and E. Moczydlowski. 2001. Ca2+-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in Ca2+-dependent activation. Proc. Natl. Acad. Sci. USA 98:4776–4781.

    Article  ADS  Google Scholar 

  • Blatz, A.L., and K.L. Magleby. 1984. Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle. J. Gen. Physiol. 84:1–23.

    Article  Google Scholar 

  • Braun, A.F., and L. Sy. 2001. Contribution of potential EF hand motifs to the calciumdependent gating of a mouse brain large conductance, calcium-sensitive K(+) channel. J. Physiol. 533:681–695.

    Article  ADS  Google Scholar 

  • Brelidze, T.I., and K.L. Magleby. 2005. Probing the geometry of the inner vestibule of BK channels with sugars. J. Gen. Physiol. 126:105–121.

    Article  Google Scholar 

  • Brelidze, T.I., X. Niu, and K.L. Magleby. 2003. A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification. Proc. Natl. Acad. Sci. USA.

    Google Scholar 

  • Brenner, R. et al. 2000. Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 407:870–876.

    Article  ADS  Google Scholar 

  • Brenner, R., T.J. Jegla, A. Wickenden, Y. Liu, and R.W. Aldrich. 2000b. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275:6453–6461.

    Article  Google Scholar 

  • Brenner, R. et al. 2005. BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat. Neurosci. 8(12): 1752–1759.

    Article  MathSciNet  Google Scholar 

  • Butler, A., S. Tsunoda, D.P. McCobb, A. Wei. and L. Salkoff. 1993. mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261:221–224.

    Article  ADS  Google Scholar 

  • Chang, C.P., S.I. Dworetzky, J. Wang, and M.E. Goldstein. 1997. Differential expression of the alpha and beta subunits of the large-conductance calcium-activated potassium channel: Implication for channel diversity. Brain Res. Mol. Brain Res. 45:33–40.

    Article  Google Scholar 

  • Cox, D.H., and R.W. Aldrich. 2000. Role of the beta1 subunit in large-conductance Ca(2+)-activated K(+) channel gating energetics. Mechanisms of enhanced Ca(2+) sensitivity. J. Gen. Physiol. 116:411–432.

    Article  Google Scholar 

  • Cox, D.H., J. Cui, and R.W. Aldrich. 1997. Separation of gating properties from permeation and block in mslo large conductance Ca-activated K+ channels. J. Gen. Physiol. 109:633–646.

    Article  Google Scholar 

  • Cox, D.H., J. Cui, and R.W. Aldrich. 1997. Allosteric gating of a large conductance Ca-activated K+ channel. J. Gen. Physiol. 110:257–281.

    Article  Google Scholar 

  • Cox, J.A. 1996. Invertebrate, plant, and lower organism calcium binding proteins. In: Guidebook to the Calcium-Binding Proteins. M.R. Celio and T.L. Pauls, editors. Oxford University Press, Oxford, pp. 1–14.

    Google Scholar 

  • Cui, J., and R.W. Aldrich. 2000. Allosteric linkage between voltage and Ca(2+)-dependent activation of BK-type mslol K(+) channels. Biochemistry 39:15612–15619.

    Article  Google Scholar 

  • Cui, J., D.H. Cox, and R.W. Aldrich. 1997. Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels. J. Gen. Physiol. 109:647–673.

    Article  Google Scholar 

  • DiChiara, T.J., and PH. Reinhart. 1995. Distinct effects of Ca2+ and voltage on the activation and deactivation of cloned Ca2+-activated K+ channels. J. Physiol. (Lond.) 489:403–418.

    Google Scholar 

  • Diaz, L. et al. 1998. Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel. J. Biol. Chem. 273:32430–32436.

    Article  Google Scholar 

  • Doyle, D.A. et al. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

    Article  ADS  Google Scholar 

  • Dworetzky, S.I. et al. 1996. Phenotypic alteration of a human BK (hSlo) channel by hSlobeta subunit coexpression: Changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J. Neurosci. 16:4543–4550.

    Google Scholar 

  • Falke, J.J., S.K. Drake, A.L. Hazard, and O.B. Peersen. 1994. Molecular tuning of ion binding to calcium signaling proteins. Q. Rev. Biophys. 27:219–290.

    Google Scholar 

  • Ferrer, M., M. Meyer, and G. Osol. 1996. Estrogen replacement increases beta-adrenoceptor-mediated relaxation of rat mesenteric arteries. J. Vasc. Res. 33:124–131.

    Article  Google Scholar 

  • Garcia-Calvo, M. et al. 1994. Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J. Biol. Chem. 269:676–682.

    Google Scholar 

  • Goldstein, S.A., and C.A. Miller. 1992. A point mutation in a Shaker K+ channel changes its charybdotoxin binding site from low to high affinity. Biophys. J. 62:5–7.

    Google Scholar 

  • Golowasch, J., A. Kirkwood, and C. Miller. 1986. Allosteric effects of Mg2+ on the gating of Ca2+-activated K+ channels from mammalian skeletal muscle. J. Exp. Biol. 124:5–13.

    Google Scholar 

  • Grissmer, S. et al. 1994. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol. Pharmacol. 45:1227–1234.

    Google Scholar 

  • Ha, T.S., M.S. Heo, and C.S. Park. 2004, Functional effects of auxiliary beta4-subunit on rat large-conductance Ca(2+)-activated K(+) channel. Biophys. J. 86:2871–2882.

    ADS  Google Scholar 

  • Hanaoka, K., J.M. Wright, I.B. Cheglakov, T. Morita, and, W.B. Guggino. 1999. A 59 amino acid insertion increases Ca(2+) sensitivity of rbslol, a Ca2+-activated K(+) channel in renal epithelia. J. Membr. Biol. 172:193–201.

    Article  Google Scholar 

  • Hanner, M. et al. 1997. The beta subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc. Natl Acad. Sci. USA 94:2853–2858.

    Article  ADS  Google Scholar 

  • Hanner, M. et al. 1998. The beta subunit of the high conductance calcium-activated potassium channel. Identification of residues involved in charybdotoxin binding. J. Biol. Chem. 273:16289–16296.

    Article  Google Scholar 

  • Heginbotham, L., T Abramson, and R. MacKinnon. 1992. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258:1152–1155.

    Article  ADS  Google Scholar 

  • Heginbotham, L., and R. MacKinnon. 1993. Conduction properties of the cloned Shaker K+ channel. Biophys. J. 65:2089–2096.

    ADS  Google Scholar 

  • Hille, B. 1992. Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Horrigan, F. T, and R.W. Aldrich. 1999. Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca(2+). J. Gen. Physiol. 114:305–336.

    Article  Google Scholar 

  • Horrigan, F.T., and R.W. Aldrich. 2002. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120:267–305.

    Article  Google Scholar 

  • Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+). J. Gen. Physiol. 114:277–304.

    Article  Google Scholar 

  • Jiang, Y., A. Pico, M. Cadene, B.T. Chait, and R. MacKinnon. 2001. Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29:593–601.

    Article  Google Scholar 

  • Jiang, Y. et al. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522.

    Article  ADS  Google Scholar 

  • Jiang, Y et al. 2003. X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41.

    Article  ADS  Google Scholar 

  • Jiang, Z., M. Wallner, P. Meera, and L. Toro. 1999. Human and rodent MaxiK channel beta-subunit genes: Cloning and characterization. Genomics 55:57–67.

    Article  Google Scholar 

  • Knaus, H.G. et al. 1994. Primary sequence and immunological characterization of beta-subunit of high conductance Ca(2+)-activated K+ channel from smooth muscle. J. Biol. Chem. 269:17274–17278.

    Google Scholar 

  • Knaus, H.G., M. Garcia-Calvo, G.J. Kaczorowski, and M.L. Garcia. 1994. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J. Biol. Chem. 269:3921–3924.

    Google Scholar 

  • Kuo, A. et al. 2003. Crystal structure of the potassium channel KirBac 1.1 in the closed state. Science 300:1922–1926.

    Article  ADS  Google Scholar 

  • Langer, P., S. Grander, and A. Rusch. 2003. Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea. J. Comp. Neurol. 455:198–209.

    Article  Google Scholar 

  • Latorre, R., A. Oberhauser, P. Labarca, and O. Alvarez. 1989. Varieties of calcium-activated potassium channels. Annu. Rev. Physiol. 51:385–399.

    Article  Google Scholar 

  • Li, W., and R.W. Aldrich. 2004. Unique inner pore properties of BK channels revealed by quaternary ammonium block. J. Gen. Physiol. 124:43–57.

    Article  Google Scholar 

  • Long, S.B., E.B. Campbell, and R. Mackinnon. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903.

    Article  ADS  Google Scholar 

  • Lu, R. et al. 2006. MaxiK channel partners: Physiological impact. J. Physiol. 570:65–72.

    Article  ADS  Google Scholar 

  • MacKinnon, R. 2003. Potassium channels. FEBS Lett. 555:62–65.

    Article  Google Scholar 

  • MacKinnon, R., L. Heginbotham, and T. Abramson. 1990. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron 5:767–771.

    Article  Google Scholar 

  • MacKinnon, R., and C. Miller. 1998. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J. Gen. Physiol. 91:335–349.

    Article  Google Scholar 

  • Magleby, K.L., and B.S. Pallotta. 1983. Burst kinetics of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (Lond.) 344:605–623.

    Google Scholar 

  • Markwardt, F., and G. Isenberg. 1992. Gating of maxi K+ channels studied by Ca2+ concentration jumps in excised inside-out multi-channel patches (myocytes from guinea pig urinary bladder). J. Gen. Physiol. 99:841–862.

    Article  Google Scholar 

  • Maylie, J., C.T. Bond, P.S. Herson, W.S. Lee, and J.P. Adelman. 2004. Small conductance Ca2+-activated K+ channels and calmodulin. J. Physiol. 554:255–261.

    Article  Google Scholar 

  • McCobb, D.P. et al. 1995. A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am. J. Physiol. 269:H767–H777.

    Google Scholar 

  • McManus, O.B. 1991. Calcium-activated potassium channels: Regulation by calcium. J. Bioenerg. Biomembr. 23:537–560.

    Article  Google Scholar 

  • McManus, O.B., and K.L. Magleby. 1988. Kinetic states and modes of single largeconductance calcium-activated potassium channels in cultured rat skeletal muscle. J. Physiol. (Lond.) 402:79–120.

    Google Scholar 

  • McManus, O.B., and K.L. Magleby. 1989. Kinetic time constants independent of previous single-channel activity suggest Markov gating for a large conductance Ca-activated K channel. J. Gen. Physiol. 94:1037–1070.

    Article  Google Scholar 

  • McManus, O.B., and K.L. Magleby. 1991. Accounting for the Ca(2+)-dependent kinetics of single large-conductance Ca(2+)-activated K+ channels in rat skeletal muscle. J. Physiol. (Lond.) 443:739–777.

    Google Scholar 

  • McManus, O.B. et al. 1995. Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14:645–650.

    Article  Google Scholar 

  • Meera, P., M. Wallner, Z. Jiang, and L. Toro. 1996. A calcium switch for the functional coupling between alpha (hslo) and beta subunits (KV,Ca beta) of maxi K channels. FEBS Lett. 382:84–88.

    Article  Google Scholar 

  • Meera, P., M. Wallner, M. Song, and L. Toro. 1997. Large conductance voltage-and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proc. Natl. Acad. Sci. USA 94:14066–14071.

    Article  ADS  Google Scholar 

  • Meera, P., M. Wallner, and L.A Toro. 2000. neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc. Natl. Acad. Sci. USA 97:5562–5567.

    Article  ADS  Google Scholar 

  • Methfessel, C., and G. Boheim. 1982. The gating of single calcium-dependent potassium channels is described by an activation/blockade mechanism. Biophys. Struct. Mech. 9:35–60.

    Article  Google Scholar 

  • Moczydlowski, E., and R. Latorre. 1983. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J. Gen. Physiol. 82:511–542.

    Article  Google Scholar 

  • Monod, J., J. Wyman, and J.P. Changeux. 1965. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12:88–118.

    Google Scholar 

  • Moss, G.W., J. Marshall, M. Morabito, J.R. Howe, and E. Moczydlowski. 1996. An evolutionarily conserved binding site for serine proteinase inhibitors in large conductance calcium-activated potassium channels. Biochemistry 35:16024–16035.

    Article  Google Scholar 

  • Munujos, P., H.G. Knaus, G.J. Kaczorowski, and M.L. Garcia. 1995. Cross-linking of charybdotoxin to high-conductance calcium-activated potassium channels: Identification of the covalently modified toxin residue. Biochemistry 34:10771–10776.

    Article  Google Scholar 

  • Nalefski, E.A., and J.J. Falke. 1996. The C2 domain calcium-binding motif: Structural and functional diversity. Protein Sci. 5:2375–2390.

    Google Scholar 

  • Nimigean, C.M., J.S. Chappie, and C. Miller. 2003. Electrostatic tuning of ion conductance in potassium channels. Biochemistry 42:9263–9268.

    Article  Google Scholar 

  • Nimigean, C.M., and K.L. Magleby. 1999. β Subunits increase the calcium sensitivity of mSlo by stabilizing bursting kinetics. Biophys. J. 76(2):A328.

    Google Scholar 

  • Nimigean, C.M., and K.L. Magleby. 1999. The beta subunit increases the Ca2+ sensitivity of large conductance Ca2+-activated potassium channels by retaining the gating in the bursting states. J. Gen. Physiol. 113:425–440.

    Article  Google Scholar 

  • Nimigean, C.M., and K.L. Magleby. 2000. Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism. J. Gen. Physiol. 115:719–736.

    Article  Google Scholar 

  • Niu, X., and K.L. Magleby. 2002. Stepwise contribution of each subunit to the cooperative activation of BK channels by Ca2+. Proc. Natl. Acad. Sci. USA 99:11441–11446.

    Article  ADS  Google Scholar 

  • Niu, X., X. Qian, and K.L. Magleby. 2004. Linker-gating ring complex as passive spring and Ca(2+)-dependent machine for a voltage- and Ca(2+)-activated potassium channel. Neuron 42:745–756.

    Article  Google Scholar 

  • Oberhauser, A., O. Alvarez, and R. Latorre. 1988. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane. J. Gen. Physiol. 92:67–86.

    Article  Google Scholar 

  • Orio, P., and R. Latorre. 2005. Differential effects of beta 1 and beta 2 subunits on BK channel activity. J. Gen. Physiol. 125:395–411.

    Article  Google Scholar 

  • Orio, P., P. Rojas, G. Ferreira, and R. Latorre. 2002. New disguises for an old channel: MaxiK channel beta-subunits. News Physiol. Sci. 17:156–161.

    Google Scholar 

  • Pallanck, L., and B. Ganetzky. 1994. Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke. Hum. Mol. Genet. 3:1239–1243.

    Article  Google Scholar 

  • Pallotta, B.S. 1983. Single channel recordings from calcium-activated potassium channels in cultured rat muscle. Cell Calcium 4:359–370.

    Article  Google Scholar 

  • Roosild, T.P., K.T. Le, and S. Choe. 2004. Cytoplasmic gatekeepers of K+-channel flux: A structural perspective Trends. Biochem. Sci. 29:39–45.

    Article  Google Scholar 

  • Rothberg, B.S., and K.L. Magleby. 1999. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism. J. Gen. Physiol. 114:93–124.

    Article  Google Scholar 

  • Rothberg, B.S., and K.L. Magleby. 2000. Voltage and Ca2+ activation of single largeconductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism. J. Gen. Physiol. 116:75–99.

    Article  Google Scholar 

  • Saito, M., C. Nelson, L. Salkoff, and CJ. Lingle. 1997. A cysteine-rich domain defined by a novel exon in a slo variant in rat adrenal chromaffin cells and PC12 cells. J. Biol. Chem. 272:11710–11717.

    Article  Google Scholar 

  • Schreiber, M. et al. 1998. Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes. J. Biol. Chem. 273:3509–3516.

    Article  Google Scholar 

  • Schreiber, M. and L. Salkoff. 1997. A novel calcium-sensing domain in the BK channel. Biophys. J. 73:1355–1363.

    Google Scholar 

  • Schreiber, M., A. Yuan, and L. Salkoff. 1999. Transplantable sites confer calcium sensitivity to BK channels. Nat. Neurosci. 2:416–421.

    Article  Google Scholar 

  • Schumacher, M.A., A.F. Rivard, H.P. Bachinger, and J.P. Adelman. 2001. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410:1120–1124.

    Article  ADS  Google Scholar 

  • Segel, I. 1993. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. Wiley-Interscience, New York.

    Google Scholar 

  • Seoh, S., D. Sigg, D.M. Papazian, and F. Bezanilla. 1996. Voltgae-sensing residues in the S2 and S4 segments of the shaker K+ channel. Neuron 16:1159–1167.

    Article  Google Scholar 

  • Shen, K.Z. et al. 1994. Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: Evidence for tetrameric channel formation. Pflugers Arch. 426:440–445.

    Article  Google Scholar 

  • Shi, J., and J. Cui. 2001. Intracellular Mg(2+) enhances the function of BK-type Ca(2+)-activated K(+) channels. J. Gen. Physiol. 118:589–606.

    Article  ADS  Google Scholar 

  • Shi, J. et al. 2002. Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418:876–880.

    Article  ADS  Google Scholar 

  • Stefani, E. et al. 1997. Voltage-controlled gating in a large conductance Ca2+-sensitive K+ channel (hslo). Proc. Natl. Acad. Sci. USA 94:5427–5431.

    Article  ADS  Google Scholar 

  • Stocker, M., and C. Miller. 1994. Electrostatic distance geometry in a K+ channel vestibule. Proc. Natl. Acad. Sci. USA 91:9509–9513.

    Article  ADS  Google Scholar 

  • Talukder, G., and R. W. Aldrich. 2000. Complex voltage-dependent behavior of single unliganded calcium-sensitive potassium channels. Biophys. J. 78:761–772.

    Article  ADS  Google Scholar 

  • Tang, X.D. et al. 2003. Haem can bind to and inhibit mammalian calcium-dependent Slol BK channels. Nature 425:531–535.

    Article  ADS  Google Scholar 

  • Tseng–Crank, J. et al. 1994. Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K+ channel isoforms from human brain. Neuron 13:1315–1330.

    Article  Google Scholar 

  • Tseng-Crank, J. et al. 1996. Cloning, expression, and distribution of a Ca(2+)-activated K+ channel beta-subunit from human brain. Proc. Natl. Acad. Sci. USA 93:9200–9205.

    Article  ADS  Google Scholar 

  • Uebele, V.N. et al. 2000. Cloning and functional expression of two families of betasubunits of the large conductance calcium-activated K+ channel. J. Biol. Chem. 275:23211–23218.

    Article  Google Scholar 

  • Wallner, M., P. Meera, and L. Toro. 1996. Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca(2+)-sensitive K+ channels: An additional transmembrane region at the N terminus. Proc. Natl. Acad. Sci. USA 93:14922–14927.

    Article  ADS  Google Scholar 

  • Wallner, M., P. Meera, and L. Toro. 1999. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: A transmembrane beta-subunit homolog. Proc. Natl. Acad. Sci. USA 96:4137–4142.

    Article  ADS  Google Scholar 

  • Wang, Y.W, J.P. Ding, X.M. Xia, and C.J. Lingle. 2002. Consequences of the stoichiometry of Slol alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. J. Neurosci. 22:1550–1561.

    Google Scholar 

  • Webster, S.M., D. Del Camino, J.P. Dekker, and G. Yellen. 2004. Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges. Nature 428:864–868.

    Article  ADS  Google Scholar 

  • Weiger, T.M. et al. 2000. A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J. Neurosci. 20:3563–3570.

    Google Scholar 

  • Xia, X.M., J.P. Ding, and C.J. Lingle. 1999. Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J. Neurosci. 19:5255–5264.

    Google Scholar 

  • Xia, X.M., J.P. Ding, and C.J. Lingle. 2003. Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: An essential role of a terminal peptide segment of three hydrophobic residues. J. Gen. Physiol. 121:125–148.

    Article  Google Scholar 

  • Xia, X.M., J.P. Ding, X.H. Zeng, K.L.Duan, and C.J. Lingle. 2000. Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit. J. Neurosci. 20:4890–4903.

    Google Scholar 

  • Xia, X.M., X. Zeng, and C.J. Lingle. 2002. Multiple regulatory sites in largeconductance calcium-activated potassium channels. Nature 418:880–884.

    Article  ADS  Google Scholar 

  • Xie, J., and O.P. McCobb. 1998. Control of alternative splicing of potassium channels by stress hormones. Science 280:443–446.

    Article  ADS  Google Scholar 

  • Yellen, G. 1984. Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells. J. Gen. Physiol. 84:157–186.

    Article  Google Scholar 

  • Yuan, A. et al. 2000. SLO-2, a K+ channel with an unusual Cl-dependence. Nat. Neurosci. 3:771–779. taf/DynaPage.taf?file=/neuro/journal/v3/n8/full/nn0800_771.html; taf/DynaPage.taf?file=/neuro/journal/v3/n8/abs/nn0800_771.html.

    Article  Google Scholar 

  • Zagotta, W.N., T. Hoshi, J. Dittman, and R.W. Aldrich. 1994. Shaker potassium channel gating. II: Transitions in the activation pathway. J. Gen. Physiol. 103:279–319.

    Article  Google Scholar 

  • Zeng, X.H., X.M. Xia, and C.J. Lingle. 2003. Redox-sensitive extracellular gates formed by auxiliary beta subunits of calcium-activated potassium channels. Nat. Struct. Biol. 10:448–454.

    Article  Google Scholar 

  • Zeng, X.H., X.M. Xia, and CJ. Lingle. 2005. Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites. J. Gen. Physiol. 125:273–286.

    Article  Google Scholar 

  • Zhang, X., C.R. Solaro, and CJ. Lingle. 2001. Allosteric regulation of BK channel gating by Ca(2+) and Mg(2+) through a nonselective, low affinity divalent cation site. J. Gen. Physiol. 118:607–636.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Cox, D.H. (2007). BKCa-Channel Structure and Function. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_5

Download citation

Publish with us

Policies and ethics