Skip to main content

Poisson–Nernst–Planck Theory of Ion Permeation Through Biological Channels

  • Chapter
Biological Membrane Ion Channels

Abstract

The kinetics of an assembly of charged particles such as electrons, ions, or colloids, particularly when subjected to externally applied electric fields, has been of interest for many years and in many disciplines. In applied physics and electrical engineering, the motion of electrons and holes through semiconductor materials under the influence of an applied voltage plays an essential role in the function of modern electronic components such as transistors, diodes, and infrared lasers (Peyghambarian et al., 1993). Electrochemistry deals in large part with the motion of simple inorganic ions (e.g., Na+, Cl-) in electrolytic solutions and how this motion is influenced when electrodes are employed to generate an electric potential drop across the solution or a membrane interface (Bockris and Reddy, 1998). Larger macroions such as charged polystyrene spheres (radius 0.1–1 micron) can also be manipulated using applied electric fields (Ise and Yoshida, 1996). Many processes in molecular biology, from self-assembly of DNA strands into bundles (Wissenburg et al., 1995) to enzymeligand docking (Gilson et al., 1994), are steered by electrostatic forces between biological macroions which are mediated by the response of simple salt ions in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aksimentiev, A. and K. Schulten. 2005. Imaging alphα-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88:3745–3761.

    Article  Google Scholar 

  • Allen, T.W., O.S. Andersen, and B. Roux. 2004. Energetics of ion conduction through the gramicidin channel. Proc. Natl. Acad. Sci. USA 101:117–122.

    Article  ADS  Google Scholar 

  • Åquist, J. 1990. Ion water interaction potentials derived from free-energy perturbation simulations. J. Phys. Chem. 94:8021–8024.

    Article  Google Scholar 

  • Andersen, O.S. 1984. Gramicidin channels. Ann. Rev. Physiol. 46:531–548.

    Article  Google Scholar 

  • Andersen, O.S., R.E. Koeppe, and B. Roux. 2005. Gramicidin channels. IEEE Trans. Nanobiosci. 4:10–20.

    Article  Google Scholar 

  • Arsen’ev, A.S., A.L. Lomize, I.L. Barsukov, and V.F. Bystrov. 1986. Gramicidin A transmembrane ion-channel. Three-dimensional structure reconstruction based on NMR spectroscopy and energy refinement. Biol. Membr. 3:1077–1104.

    Google Scholar 

  • Barcilon, V. 1992. Ion flow through narrow membrane channels. 1. SIAM J. Appl. Math. 52:1391–1404.

    Article  MATH  MathSciNet  Google Scholar 

  • Barcilon, V., D.P. Chen, and R.S. Eisenberg. 1992. Ion flow through narrow membrane channels. 2. SIAM J. Appl. Math. 52:1405–1425.

    Article  MATH  MathSciNet  Google Scholar 

  • Beck, T.L. 1997. Real-space multigrid solution of electrostatics problems and the Kohn-Sham equations. Int. J. Quantum Chem. 65:477–486.

    Article  Google Scholar 

  • Bockris, J.O., and A.K.N. Reddy. 1998. Modern Electrochemistry 1: Ionics. Premium Press, New York.

    Google Scholar 

  • Burykin, A., C.N. Schutz, J. Vill·, and A.Warshel. 2002. Simulations of ion current in realistic models of ion channels: The KcsA potassium channel. Proteins Struct. Funct. Genet. 43:265–280.

    Google Scholar 

  • Busath, D.D., C.D. Thulin, R.W. Hendershot, L.R. Phillips, P. Maughan, C.D. Cole, N.C. Bingham, S. Morrison, L.C. Baird, R.J. Hendershot, M. Cotten, and T.A. Cross. 1998. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)trp(13) gramicidin A channels. Biophys. J. 75:2830–2844.

    Article  Google Scholar 

  • Cárdenas, A.E., R.D. Coalson, and M.G. Kurnikova. 2000. Three-dimensional Poisson–Nernst–Planck theory studies: Influence of membrane electrostatics on gramicidin A channel conductance. Biophys. J. 79:80–93.

    Article  Google Scholar 

  • Chandler, D. 1987. Introduction to Modern Statistical Mechanics. Oxford University Press, New York, 274pp.

    Google Scholar 

  • Chandrasekhar, S. 1943. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15:1–89.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Chen, D.P., and R. Eisenberg. 1993a. Charges, currents, and potentials in ionic channels of one conformation. Biophys. J. 64:1405–1421.

    Article  ADS  Google Scholar 

  • Chen, D.P., and R.S. Eisenberg. 1993b. Flux, coupling, and selectivity in ionic channels of one conformation. Biophys. J. 65:727–746.

    Article  ADS  Google Scholar 

  • Cheng, M.H., M. Cascio, and R.D. Coalson. 2005. Theoretical studies of the M2 transmembrane segment of the glycine receptor. Models of the open pore structure and current–voltage characteristics. Biophys. J. 88:110a.

    Google Scholar 

  • Chung, S.H., T.W. Allen, M. Hoyles, and S. Kuyucak. 1999. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys. J. 77:2517–2533.

    Article  Google Scholar 

  • Chung, S.H., T.W. Allen, and S. Kuyucak. 2002. Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. Biophys. J. 82:628–645.

    Article  Google Scholar 

  • Chung, S.H., M. Hoyles, T. Allen, and S. Kuyucak. 1998. Study of ionic currents across a model membrane channel using Brownian dynamics. Biophys. J. 75:793–809.

    Article  ADS  Google Scholar 

  • Chung, S.H., and S. Kuyucak. 2002. Recent advances in ion channel research. BBA Biomembr. 1565:267–286.

    Article  Google Scholar 

  • Cifu, A.S., R.E. Koeppe, and O.S. Andersen. 1992. On the superamolecular organization of gramicidin channels—the elementary conducting unit is a dimer. Biophys. J. 61:189–203.

    Article  Google Scholar 

  • Coalson, R.D., and T.L. Beck. 1998. Numerical Methods for Solving Poisson and Poisson–Boltzman type Equations. John Wiley & Sons, New York, pp. 2086–2100.

    Google Scholar 

  • Coalson, R.D., and M.G. Kurnikova. 2005. Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 4:81–93.

    Article  Google Scholar 

  • Cornell, W.D., P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman. 1995. A 2nd generation force-field for the simulation of protein, nucleic-acid, and organic-molecules. J. Am. Chem. Soc. 117:5179–5197.

    Article  Google Scholar 

  • Corry, B., S. Kuyucak, and S.H. Chung. 2003. Dielectric self-energy in Poisson–Boltzmann and Poisson–Nernst–Planck models of ion channels. Biophys. J. 84:3594–3606.

    Article  Google Scholar 

  • Crozier, P.S., D. Henclerson, R.L. Rowley, and D.D. Busath. 2001a. Model channel ion currents in NaCl-extended simple point charge water solution with applied- field molecular dynamics. Biophys. J. 81:3077–3089.

    Article  Google Scholar 

  • Crozier, P.S., R.L. Rowley, N.B. Holladay, D. Henderson, and D.D. Busath. 2001b. Molecular dynamics simulation of continuous current flow through a model biological membrane channel. Phys. Rev. Lett. 86:2467–2470.

    Article  ADS  Google Scholar 

  • Dasent, W.E. 1982. Inorganic Energetics, 2nd Ed. Cambridge University Press, New York.

    Google Scholar 

  • Dieckmann, G.R., and W.F. DeGrado. 1997. Modeling transmembrane helical oligomers. Curr. Opin. Struct. Biol. 7:486–494.

    Article  Google Scholar 

  • Dieckmann, G.R., J.D. Lear, Q.F. Zhong, M.L. Klein, W.F. DeGrado, and K.A. Sharp. 1999. Exploration of the structural features defining the conduction properties of a synthetic ion channel. Biophys. J. 76:618–630.

    Article  Google Scholar 

  • Dill, K.A., and S. Bromberg. 2003. Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology. Garland Science, New York. 666pp.

    Google Scholar 

  • Doi, M. 1996. Introduction to Polymer Physics. Clarendon Press, Oxford. 120pp.

    Google Scholar 

  • Edwards, S., B. Corry, S. Kuyucak, and S.H. Chung. 2002. Continuum electrostatics fails to describe ion permeation in the gramicidin channel. Biophys. J. 83:1348–1360.

    Article  ADS  Google Scholar 

  • Elber, R., D. Rojewska, D.P. Chen, and R.S. Eisenberg. 1995. Sodium in gramicidin – an example of a permion. Biophys. J. 68:906–924.

    Article  ADS  Google Scholar 

  • FEMLAB: Multiphyics modeling. 2004. http://www.comsol.com/products/femlab.

    Google Scholar 

  • Gillespie, D., L. Xu, Y. Wang, and G. Meissner. 2005. (De)constructing the ryanodine receptor: Modeling ion permeation and selectivity of the calcium release channel. J. Phys. Chem. B 109:15598–15610.

    Article  Google Scholar 

  • Gilson, M.K., T.P. Straatsma, J.A. McCammon, D.R. Ripoll, C.H. Faerman, P.H. Axelsen, I. Silman, and J.L. Sussman. 1994. Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science 263:1276–1278.

    Article  ADS  Google Scholar 

  • Graf, P., M. Kurnikova, R. Coalson, and A. Nitzan. 2004. Comparison of dynamic lattice Monte Carlo simulations and the dielectric self-energy Poisson–Nernst–Planck continuum theory for model ion channels. J. Phys. Chem. B 108:2006–2015.

    Article  Google Scholar 

  • Graf, P., A. Nitzan, M.G. Kurnikova, and R.D. Coalson. 2000. A dynamic lattice Monte Carlo model of ion transport in inhomogeneous dielectric environments: Method and implementation. J. Phys. Chem. B 104:12324–12338.

    Article  Google Scholar 

  • Hille, B. 1992. Ionic Channels of Excitable Membranes. Sinauer Associates, Cambridge, NY. 814pp.

    Google Scholar 

  • Hollerbach, U., D.P. Chen, D.D. Busath, and B. Eisenberg. 2000. Predicting function from structure using the Poisson–Nernst–Planck equations: Sodium current in the gramicidin A channel. Langmuir 16:5509–5514.

    Article  Google Scholar 

  • Hummer, G., J.C. Rasaiah, and J.P. Noworyta. 2001. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190.

    Article  ADS  Google Scholar 

  • Im, W., and B. Roux. 2002. Ions and counterions in a biological channel: A molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. J. Mol. Biol. 319:1177–1197.

    Article  Google Scholar 

  • Ise, N., and H. Yoshida. 1996. Paradoxes of the repulsion-only assumption. Acc. Chem. Res. 29:3–5.

    Article  Google Scholar 

  • Kittel, C. 1996. Introduction to Solid State Physics, 7th Ed. John Wiley & Sons, New York, 665pp.

    Google Scholar 

  • Kollman, P.A., I. Massova, C. Reyes, B. Kuhn, S.H. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, and T.E. Cheatham. 2000. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 33:889–897.

    Article  Google Scholar 

  • Koneshan, S., R.M. Lynden-Bell, and J.C. Rasaiah. 1998. Friction coefficients of ions in aqueous solution at 25 degrees C. J. Amer. Chem. Soc. 120:12041–12050.

    Article  Google Scholar 

  • Kurnikova, M.G., R.D. Coalson, P. Graf, and A. Nitzan. 1999. A lattice relaxation algorithm for three-dimensional Poisson–Nernst–Planck theory with application to ion transport through the gramicidin A channel. Biophys. J. 76:642–656.

    Article  Google Scholar 

  • Leach, A.R. 2001. Molecular Modelling: Principles and Applications, 2nd Ed. Prentice Hall, Harlow, England. 744pp.

    Google Scholar 

  • Luty, B.A., M.E. Davis, and J.A. McCammon. 1992. Solving the finite-difference non-linear Poisson–Boltzmann equation. J. Comp. Chem. 13:1114–1118.

    Article  MathSciNet  Google Scholar 

  • Lynden-Bell, R.M., and J.C. Rasaiah. 1996. Mobility and solvation of ions in channels. J. Chem. Phys. 105:9266–9280.

    Article  ADS  Google Scholar 

  • Mamonov, A.B., R.D. Coalson, A. Nitzan, and M.G. Kurnikova. 2003. The role of the dielectric barrier in narrow biological channels: A novel composite approach to modeling single-channel currents. Biophys. J. 84:3646–3661.

    Article  Google Scholar 

  • Mamonov, A.B., M.G. Kurnikova, and R.D. Coalson. 2006. Diffusion constant of K+ inside Gramicidin A: A comparative study of four computational methods. Biophys. Chem. doi:10.1061/j.bpc.2006.03.019.

    Google Scholar 

  • Marcus, R.A. 1956. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24:966–978.

    Article  ADS  Google Scholar 

  • Marcus, R.A. 1965. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43:679–701.

    Article  ADS  Google Scholar 

  • Marion, J.B. 1965. Classical Electromagnetic Radiation. Academic Press, NewYork, 479pp.

    MATH  Google Scholar 

  • Mashl, R.J., Y.Z. Tang, J. Schnitzer, and E. Jakobsson. 2001. Hierarchical approach to predicting permeation in ion channels. Biophys. J. 81:2473–2483.

    Article  Google Scholar 

  • McQuarrie, D.A. 1976. Statistical Mechanics, Harper Collins Publishers, New York, 641pp.

    Google Scholar 

  • Noskov, S.Y., W. Im, and B. Roux. 2004. Ion permeation through the alphα-hemolysin channel: Theoretical studies based on Brownian dynamics and Poisson-Nernst- Plank electrodiffusion theory. Biophys. J. 87:2299–2309.

    Article  ADS  Google Scholar 

  • O’Connell, A.M., R.E. Koeppe, and O.S. Andersen. 1990. Kinetics of gramicidin channel formation in lipid bilayers—transmembrane monomer association. Science 250:4985.

    Article  Google Scholar 

  • Peyghambarian, N., S.W. Koch, and A. Mysyrowicz. 1993. Introduction to Semiconductor Optics. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. 1986. Numerical Recipes. Cambridge University Press, New York, 848pp.

    Google Scholar 

  • Rostovtseva, T.K., V.M. Aguilella, I. Vodyanoy, S.M. Bezrukov, and V.A. Parsegian. 1998. Membrane surface-charge titration probed by gramicidin A channel conductance. Biophys. J. 75:1783–1792.

    Article  Google Scholar 

  • Roux, B., and S. Berneche. 2002. On the potential functions used in molecular dynamics simulations of ion channels. Biophys. J. 82:1681–1684.

    Article  Google Scholar 

  • Roux, B., and R. MacKinnon. 1999. The cavity and pore helices the KcsA K+ channel: Electrostatic stabilization of monovalent cations. Science 285:100–102.

    Article  Google Scholar 

  • Roux, B., and M. Karplus. 1993. Ion transport in the Gramicidin channel: Free energy of the solvated ion in a model membrane. J. Am. Chem. Soc. 115:3250–3260.

    Article  Google Scholar 

  • Schuss, Z., B. Nadler, and R.S. Eisenberg. 2001. Derivation of Poisson and Nernst- Planck equations in a bath and channel from a molecular model. Phys. Rev. E 64:036116:1–14.

    Article  Google Scholar 

  • Sharp, K.A., and B.H. Honig. 1990. Electrostatic interactions in macromolecules— theory and applications. Ann. Rev. Biophys. Biophys. Chem. 19:301–332.

    Article  Google Scholar 

  • Sten-Knudsen, O. 1978. Passive transport processes. In: Membrane Transport in Biology. G. Giebish, D.C. Tosteson, and H.H. Ussing, editors. Springer-Verlag, New York, pp. 5–114.

    Google Scholar 

  • Tsonchev, S., R.D. Coalson, A. Liu, and T.L. Beck. 2004. Flexible polyelectrolyte simulations at the Poisson–Boltzmann level:Acomparison of the kink-jump and multigrid configurational-bias Monte Carlo methods. J. Chem. Phys. 120:9817–9821.

    Article  ADS  Google Scholar 

  • Wang, Y., L. Xu, D.A. Pasek, D. Gillespie, and G. Meissner. 2005. Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor. Biophys. J. 89:256–265.

    Article  Google Scholar 

  • Wissenburg, P., T. Odjik, P. Cirkel, and M. Mandel. 1995. Multimolecular aggregation of mononucleosomal DNA in concentrated isotropic solutions. Macromol 28:2315–2328.

    Article  ADS  Google Scholar 

  • Woolf, T.B., and B. Roux. 1997. The binding site of sodium in the gramicidin A channel: Comparison of molecular dynamics with solid-state NMR data. Biophys. J. 72:1930–1945.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Coalson, R.D., Kurnikova, M.G. (2007). Poisson–Nernst–Planck Theory of Ion Permeation Through Biological Channels. In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_13

Download citation

Publish with us

Policies and ethics