Skip to main content

Ion Channels, from Fantasy to Fact in Fifty Years1

  • Chapter
Biological Membrane Ion Channels

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

  • 1884 Accesses

Abstract

Biologists have long recognized that the transport of ions and of neutral species across cell membranes is central to physiological function. Cells rely on their biomembranes, which separate the cytoplasm from the extracellular medium, to maintain the two electrolytes at very different composition. Specialized molecules, essentially biological nanodevices, have evolved to selectively control the movement of all the major physiological species. As should be clear, there have to be at least two distinct modes of transport. To maintain the disequilibrium, there must be molecular assemblies that drive ions and other permeable species against their electrochemical potential gradients. Such devices require energy input, typically coupling a vectorial pump with a chemical reaction, the dephosphorylation of ATP (adenosine triphosphate). These enzymes (biochemical catalysts) control highly concerted, and relatively slow, process, with turnovers of ≫ 100 s¡ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Accardi, A., and C. Miller. 2004. Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels. Nature 427:803–307.

    ADS  Google Scholar 

  • Aggarwal, S.K., and R. MacKinnon. 1996. Contribution of the S4 segment to gating charge in the Shaker KC channel. Neuron 16:1169–9177.

    Google Scholar 

  • Akabas, M.H., D.A. Stauffer, M. Xu, and A. Karlin. 1992. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258:307–310.

    ADS  Google Scholar 

  • Allen, T.W., O.S. Andersen, and B. Roux. 2004. Energetics of ion conduction through the gramicidin channel. Proc. Natl. Acad. Sci. USA 101:117–122.

    ADS  Google Scholar 

  • Allen, T.W., T. Bastug, S. Kuyucak, and S.H. Chung. 2003. Gramicidin a channel as a test ground for molecular dynamics force fields. Biophys. J. 84:2159–2168.

    Google Scholar 

  • Allen, T.W., A. Bilznyuk, A.P. Rendell, S. Kuyucak, and S.H. Chung. 2000. The potassium channel: Structure, selectivity and diffusion. J. Chem. Phys. 112:8191–8204.

    ADS  Google Scholar 

  • Armstrong, C.M., F. Bezanilla, and E. Rojas. 1973. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. Gen. Physiol. 62:375–391.

    Google Scholar 

  • Armstrong, C.M., and L. Binstock. 1965. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. Gen. Physiol. 48:859–872.

    Google Scholar 

  • Arrhenius, S. 1887. Einfluss der Neutralsalze auf der Reactionsgeschwindigkeit der Verseifung von Äthylacetat. Zeitschrift für Physikalisches Chemie 1:110–133.

    Google Scholar 

  • Arseniev, A.S., I.L. Barsukov, V.F. Bystrov, A.L. Lomize, and Y.A. Ovchinnikov. 1985. 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 186:168–174.

    Google Scholar 

  • Baker, O.S., H.P. Larsson, L.M. Mannuzzu, and E.Y. Isacoff. 1998. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in Shaker KC channel gating. Neuron 20:1283–1294.

    Google Scholar 

  • Beckstein, O., P.C. Biggin, and M.S.P. Sansom. 2001. A hydrophobic gating mechanism for nanopores. J. Phys. Chem. B 105:12902–12905.

    Google Scholar 

  • Beckstein, O., and M.S.P. Sansom. 2004. The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys. Biol. 1:43–52.

    ADS  Google Scholar 

  • Bernèche, S., and B. Roux. 2001. Energetics of ion conduction through the KC channel. Nature 414:73–77.

    ADS  Google Scholar 

  • Bernèche, S., and B. Roux. 2003. A microscopic view of ion conduction through the KC channel. PNAS 100:8644–8648.

    ADS  Google Scholar 

  • Bezanilla, F. 2000. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80:555–592.

    Google Scholar 

  • Bezanilla, F. 2002. Voltage sensor movements. J. Gen. Physiol. 120:465–473.

    Google Scholar 

  • Bezanilla, F., and C.M. Armstrong. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axon. J. Gen. Physiol. 60:588–608.

    Google Scholar 

  • Boda, D., D.D. Busath, B. Eisenberg, D. Henderson, and W. Nonner. 2002. Monte Carlo simulations of ion selectivity in a biological Na channel: Charge-space competition. Phys. Chem. Chem. Phys. 4:5154–5160.

    Google Scholar 

  • Boda, D., D. Henderson, and D.D. Busath. 2001. Monte Carlo study of the effect of ion and channel size on the selectivity of a model calcium channel. J. Phys. Chem. B 105:11574–11577.

    Google Scholar 

  • Bostick, D.L., and M.L. Berkowitz. 2004. Exterior site occupancy infers chlorideinduced proton gating in a prokaryotic homolog of the ClC chloride channel. Biophys. J. 87:1686–1696.

    ADS  Google Scholar 

  • Brejc, K., W.J. van Dijk, R.V. Klaassen, M. Schuurmans, J. van Der Oost, A.B. Smit, and T.K. Sixma. 2001. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276.

    ADS  Google Scholar 

  • Brisson, A., and P.N. Unwin. 1985. Quaternary structure of the acetylcholine receptor. Nature 315:474–477.

    ADS  Google Scholar 

  • Burykin, A., M. Kato, and A. Warshel. 2003. Exploring the origin of the ion selectivity of the KcsA potassium channel. Proteins 52:412–426.

    Google Scholar 

  • Burykin, A., C.N. Schutz, J. Villa, and A.Warshel. 2002. Simulations of ion current in realistic models of ion channels: The KcsA potassium channel. Proteins 47:265–280.

    Google Scholar 

  • Burykin, A., and A. Warshel. 2003. What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Biophys. J. 85:3696–3706.

    ADS  Google Scholar 

  • Burykin, A., and A. Warshel. 2004. On the origin of the electrostatic barrier for proton transport in aquaporin. FEBS Lett. 570:41–46.

    Google Scholar 

  • Cai, M., and P.C. Jordan. 1990. How does vestibule surface charge affect ion conduction and toxin binding in a sodium channel? Biophys. J. 57:883–391.

    ADS  Google Scholar 

  • Callahan, M.J., and S.J. Korn. 1994. Permeation of NaC through a delayed rectifier KC channel in chick dorsal root ganglion neurons. J. Gen. Physiol. 104:747–771.

    Google Scholar 

  • Cha, A., and F. Bezanilla. 1997. Characterizing voltage-dependent conformational changes in the Shaker KC channel with fluorescence. Neuron 19:1127–1140.

    Google Scholar 

  • Cha, A., G.E. Snyder, P.R. Selvin, and F. Bezanilla. 1999. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402:809–813.

    ADS  Google Scholar 

  • Chakrabarti, N., E. Tajkhorshid, B. Roux, and R. Pomes. 2004. Molecular basis of proton blockage in aquaporins. Structure (Camb) 12:65–74.

    Google Scholar 

  • Chanda, B., O.K. Asamoah, R. Blunck, B. Roux, and F. Bezanilla. 2005. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436:852–856.

    ADS  Google Scholar 

  • Chen, D.P., V. Barcilon, and R.S. Eisenberg. 1992. Constant fields and constant gradients in open ionic channels. Biophys. J. 61:1372–1393.

    Google Scholar 

  • Chou, P.Y., and G.D. Fasman. 1978. Empirical predictions of protein conformation. Annu. Rev. Biochem. 47:251–276.

    Google Scholar 

  • Chung, S.H., T.W. Allen, and S. Kuyucak. 2002a. Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. Biophys. J. 82:628–645.

    Google Scholar 

  • Chung, S.H., T.W. Allen, and S. Kuyucak. 2002b. Modeling diverse range of potassium channels with Brownian dynamics. Biophys. J. 83:263–277.

    ADS  Google Scholar 

  • Cohen, J., and K. Schulten. 2004. Mechanism of anionic conduction across ClC. Biophys. J. 86:836–845.

    ADS  Google Scholar 

  • Cooper, K., E. Jakobsson, and P.Wolynes. 1985. The theory of ion transport through membrane channels. Prog. Biophys. Mol. Biol. 46:51–56.

    Google Scholar 

  • Corry, B., S. Kuyucak, and S.H. Chung. 2000. Tests of continuum theories as models of ion channels. II. Poisson–Nernst–Planck theory versus Brownian dynamics. Biophys. J. 78:2364–2381.

    Google Scholar 

  • Corry, B., S. Kuyucak, and S.H. Chung. 2003. Dielectric self-energy in Poisson–Boltzmann and Poisson–Nernst–Planck models of ion channels. Biophys. J. 84:3594–3606.

    Google Scholar 

  • Corry, B., M. O’Mara, and S.-H. Chung. 2004. Conduction mechanisms of chloride ions in ClC-type channels. Biophys. J. 86:846–860.

    ADS  Google Scholar 

  • Cuello, L.G., D.M. Cortes, and E. Perozo. 2004. Molecular architecture of the KvAP voltage-dependent KC channel in a lipid bilayer. Science 306:491–495.

    ADS  Google Scholar 

  • de Groot, B.L., T. Frigato, V. Helms, and H. Grubmüller. 2003. The mechanism of proton exclusion in the aquaporin-1 water channel. J. Mol. Biol. 333: 279–293.

    Google Scholar 

  • Denker, B., B. Smith, F. Kuhajda, and P. Agre. 1988. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263:15634–15642.

    Google Scholar 

  • Dorman, V.L., and P.C. Jordan. 2004. Ionic permeation free energy in gramicidin: A semimicroscopic perspective. Biophys. J. 86:3529–3541.

    ADS  Google Scholar 

  • Doyle, D.A., J. Morais-Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of KC conduction and selectivity. Science 280:69–77.

    ADS  Google Scholar 

  • Durkin, J.T., L.L. Providence, R.E. Koeppe 2nd, and O.S. Andersen. 1993. Energetics of heterodimer formation among gramicidin analogues with an NH2-terminal addition or deletion. Consequences of missing a residue at the join in the channel. J. Mol. Biol. 231:1102–1121.

    Google Scholar 

  • Dutzler, R., E.B. Campbell, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294.

    ADS  Google Scholar 

  • Dutzler, R., E.B. Campbell, and R. MacKinnon. 2003. Gating the selectivity filter in ClC chloride channels. Science 300:108–812.

    ADS  Google Scholar 

  • Edwards, S., B. Corry, S. Kuyucak, and S.H. Chung. 2002. Continuum electrostatics fails to describe ion permeation in the gramicidin channel. Biophys. J. 83:1348–8360.

    ADS  Google Scholar 

  • Eisenberg, R.S. 1999. From structure to function in open ionic channels. J. Membr. Biol. 171:1–24.

    Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation. Biophys. J. 2(2, Pt 2):259–323.

    ADS  Google Scholar 

  • Eyring, H. 1935. The activated complex in chemical reactions. J. Chem. Phys. 1:107–115.

    ADS  Google Scholar 

  • Faraldo-Gomez, J.D., and B. Roux. 2004. Electrostatics of ion stabilization in a ClC chloride channel homologue from Escherichia coli. J. Mol. Biol. 339:981–1000.

    Google Scholar 

  • Fu, D., A. Libson, L.J. Miercke, C. Weitzman, P. Nollert, J. Krucinski, and R.M. Stroud. 2000. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486.

    ADS  Google Scholar 

  • Gandhi, C.S., E. Clarck, E. Loots, A. Pralle, and E.Y. Isacoff. 2003. The orientation and molecular movement of a KC channel voltage–sensing domain. Neuron 40:515–525.

    Google Scholar 

  • Gandhi, C.S., and E.Y. Isacoff. 2002. Molecular models of voltage sensing. J. Gen. Physiol. 120:455–563.

    Google Scholar 

  • Garofoli, S., and P.C. Jordan. 2003. Modeling permeation energetics in the KcsA potassium channel. Biophys. J. 84:2814–2830.

    ADS  Google Scholar 

  • Glauner, K.S., L.M. Mannuzzu, C.S. Gandhi, and E.Y. Isacoff. 1999. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402:813–817.

    ADS  Google Scholar 

  • Gullingsrud, J., and K. Schulten. 2003. Gating of MscL studied by steered molecular dynamics. Biophys. J. 85:2087–2099.

    Google Scholar 

  • Hagiwara, S., and N. Saito. 1959. Voltage-current relations in nerve cell membrane of Onchidium verruculatum. J. Physiol. 148:161–179.

    Google Scholar 

  • Hamill, O.P., A. Marty, E. Neher, B. Sakmann, and F.J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100.

    Google Scholar 

  • Harries, W.E.C., D. Akhavan, L.J.W. Miercke, S. Khademi, and R.M. Stroud. 2004. The channel architecture of aquaporin 0 at a 2.2-A resolution.PNAS 101:14045–14050.

    ADS  Google Scholar 

  • Heinemann, S.H., H. Terlau, W. Stuhmer, K. Imoto, and S. Numa. 1992. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443.

    ADS  Google Scholar 

  • Hille, B. 1970. Ionic channels in nerve membranes. Prog. Biophys. Mol. Biol. 21:1–32.

    Google Scholar 

  • Hille, B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve. J. Gen. Physiol. 58:599–619.

    Google Scholar 

  • Hille, B. 1973. Potassium channels in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol. 61:669–686.

    Google Scholar 

  • Hladky, S.B., and D.A. Haydon. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim. Biophys. Acta 274:294–312.

    Google Scholar 

  • Hodgkin, A.L., and A.F. Huxley. 1952a. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449–472.

    Google Scholar 

  • Hodgkin, A.L., and A.F. Huxley. 1952b. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544.

    Google Scholar 

  • Hodgkin, A.L., A.F. Huxley, and B. Katz. 1952. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116:424–448.

    Google Scholar 

  • Hodgkin, A.L., and R.D. Keynes. 1955. The potassium permeability of a giant nerve fibre. J. Physiol. 128:61–88.

    Google Scholar 

  • Hopp, T.P., and K.R.Woods. 1981. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA 78:3824–3828.

    ADS  Google Scholar 

  • Horn, R. 2002. Coupled movements in voltage-gated ion channels. J. Gen. Physiol. 120:449–453.

    Google Scholar 

  • Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538.

    ADS  Google Scholar 

  • Hubbell, W.L., H.S. McHaourab, C. Altenbach, and M.A. Lietzow. 1996. Watching proteins move using site-directed spin labeling. Structure 4:779–783.

    Google Scholar 

  • Ilan, B., E. Tajkhorshid, K. Schulten, and G.A. Voth. 2004. The mechanism of proton exclusion in aquaporin channels. Proteins 55:223–228.

    Google Scholar 

  • Immke, D., M. Wood, L. Kiss, and S.J. Korn. 1999. Potassium-dependent changes in the conformation of the Kv2.1 potassium channel pore. J. Gen. Physiol. 113:819–936.

    Google Scholar 

  • Imoto, K., C. Busch, B. Sakmann, M. Mishina, T. Konno, J. Nakai, H. Bujo, Y. Mori, K. Fukuda, and S. Numa. 1988. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648.

    ADS  Google Scholar 

  • Jan, L.Y., and Y.N. Jan. 1990. A superfamily of ion channels. Nature 345:672.

    ADS  Google Scholar 

  • Jensen, M.O., E. Tajkhorshid, and K. Schulten. 2003. Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys. J. 85:2884–2899.

    ADS  Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002a. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522.

    ADS  Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002b. The open pore conformation of potassium channels. Nature, 417:523–526.

    ADS  Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003a. X-ray structure of a voltage-dependent KC channel. Nature 423:33–41.

    ADS  Google Scholar 

  • Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. 2003b. The principle of gating charge movement in a voltage-dependent KC channel. Nature 423:42–48.

    ADS  Google Scholar 

  • Jordan, P.C. 1983. Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. Biophys. J. 41:189–195.

    ADS  Google Scholar 

  • Jordan, P.C. 1987. How pore mouth charge distributions alter the permeability of transmembrane ionic channels. Biophys. J. 51:297–311.

    ADS  Google Scholar 

  • Jordan, P.C. 1999. Ion permeation and chemical kinetics. J. Gen. Physiol. 114:601–603.

    Google Scholar 

  • Jordan, P.C., R.J. Bacquet, J.A. McCammon, and P. Tran. 1989. How electrolyte shielding influences the electrical potential in transmembrane ion channels. Biophys. J. 55:1041–1052.

    ADS  Google Scholar 

  • Karlin, A., and M.H. Akabas. 1998. Substituted-cysteine accessibility method. Methods Enzymol. 293:123–145.

    Google Scholar 

  • Ketchem, R., B. Roux, and T. Cross. 1997. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5:1655–1669.

    Google Scholar 

  • Koeppe, R.E., 2nd, and O.S. Anderson. 1996. Engineering the gramicidin channel. Annu. Rev. Biophys. Biomol. Struct. 25:231–258.

    Google Scholar 

  • Kuo, A., J.M. Gulbis, J.F. Antcliff, T. Rahman, E.D. Lowe, J. Zimmer, J. Cuthbertson, F.M. Ashcroft, T. Ezaki, and D.A. Doyle. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926.

    ADS  Google Scholar 

  • Laine, M., M.C. Lin, J.P. Bannister, W.R. Silverman, A.F. Mock, B. Roux, and D.M. Papazian. 2003. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39:467–481.

    Google Scholar 

  • Laüger, P. 1973. Ion transport through pores: A rate-theory analysis. Biochim. Biophys. Acta 311:423–441.

    Google Scholar 

  • Levitt, D.G. 1978. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. Biophys. J. 22:209–219.

    ADS  Google Scholar 

  • Levitt, D.G. 1986. Interpretation of biological ion channel flux data - Reaction-rate versus continuum theory. Annu. Rev. Biophys. Biophys. Chem. 15:29–57.

    Google Scholar 

  • Long, S.B., E.B. Campbell, and R. MacKinnon. 2005a. Crystal structure of a mammalian voltage-dependent Shaker family KC channel. Science 309:897–903.

    ADS  Google Scholar 

  • Long, S.B., E.B. Campbell, and R. MacKinnon. 2005b. Voltage sensor of Kv1.2: Structural basis of electromechanical coupling. Science 309:903–908.

    ADS  Google Scholar 

  • Lu, Z., and R. MacKinnon. 1994. Electrostatic tuning of Mg2C affinity in an inwardrectifier KC channel. Nature 371:243–246.

    ADS  Google Scholar 

  • Luzhkov, V.B., and J. Åqvist. 2001. K(+)/Na(+) selectivity of the KcsA potassium channel from microscopic free energy perturbation calculations. Biochim. Biophys. Acta 1548:194–202.

    Google Scholar 

  • Mackay, D.H.J., P.H. Berens, K.R. Wilson, and A.T. Hagler. 1984. Structure and dynamics of ion transport through gramicidin A. Biophys. J. 46:229–248.

    Google Scholar 

  • MacKinnon, R. 1991. Determination of the subunit stoichiometry of a voltageactivated potassium channel. Nature 350:232–235.

    ADS  Google Scholar 

  • Mamonov, A.B., R.D. Coalson, A. Nitzan, and M.G.Kurnikova. 2003. The role of the dielectric barrier in narrow biological channels: A novel composite approach to modeling single-channel currents. Biophys. J. 84:3646–3661.

    Google Scholar 

  • Mannuzzu, L.M., M.M. Moronne, and E.Y. Isacoff. 1996. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271:213–216.

    ADS  Google Scholar 

  • Miller, C. 1982. Open-state substructure of single chloride channels from Torpedo electroplax. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299:401–411.

    ADS  Google Scholar 

  • Miller, C., and E. Racker. 1976. CaCC -induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J. Membr. Biol. 30:283–300.

    Google Scholar 

  • Miloshevsky, G.V., and P.C. Jordan. 2003. Theoretical study of the passage of chloride ions through a bacterial ClC chloride channel. J. Gen. Physiol. 122:32A.

    Google Scholar 

  • Miloshevsky, G.V., and P.C. Jordan. 2004a. Permeation in ion channels: The interplay of structure and theory. Trends Neurosci. 27:308–314.

    Google Scholar 

  • Miloshevsky, G.V., and P.C. Jordan. 2004b.Water and ion permeation in bAQP1 and GlpF channels: A kinetic Monte Carlo study. Biophys. J. 87:3690–3702.

    Google Scholar 

  • Mitra, A.K., M.P. McCarthy, and R.M. Stroud. 1989. Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kD cytoskeletal protein, determined at 22 A by low dose electron microscopy and x-ray diffraction to 12.5 A. J. Cell Biol. 109:755–774.

    Google Scholar 

  • Miyazawa, A., Y. Fujiyoshi, and N. Unwin. 2003. Structure and gating mechanism of the acetylcholine receptor pore. Nature 424:949–955.

    ADS  Google Scholar 

  • Mullins, L. 1959. The penetration of some cations into muscle. J. Gen. Physiol. 42:817–829.

    Google Scholar 

  • Mullins, L.J. 1968. A single channel or a dual channel mechanism for nerve excitation. J. Gen. Physiol. 52:550–556.

    Google Scholar 

  • Murata, K., K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J.B. Heymann, A. Engel, and Y. Fujiyoshi. 2000. Structural determinants of water permeation through aquaporin-1. Nature 407:599–605.

    ADS  Google Scholar 

  • Nakamura, Y., S. Nakajima, and H. Grundfest. 1965. The action of tetrodotoxin on electrogenic components of squid giant axons. J. Gen. Physiol. 48:985–996.

    Google Scholar 

  • Narahashi, T., J.W. Moore, and W.R. Scott. 1964. Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. Gen. Physiol. 47:965–974.

    Google Scholar 

  • Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802.

    ADS  Google Scholar 

  • Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, Y. Furutani, T. Hirose, M. Asai, S. Inayama, T. Miyata, and S. Numa. 1982. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793–797.

    ADS  Google Scholar 

  • Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, Y. Furutani, T. Hirose, H. Takashima, S. Inayama, T. Miyata, and S. Numa. 1983. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–532.

    ADS  Google Scholar 

  • Nonner, W., L. Catacuzzeno, and B. Eisenberg. 2000. Binding and selectivity in L-type calcium channels: A mean spherical approximation. Biophys. J. 79:1976–1992.

    Google Scholar 

  • Noskov, S.Y., S. Berneche, and B. Roux. 2004a. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–834.

    ADS  Google Scholar 

  • Noskov, S.Y., S. Berneche, and B. Roux. 2004b. The microscopic origin of ion selectivity in potassium channels. Biophys. J. 86:351a–352a.

    Google Scholar 

  • Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature 221:844–846.

    ADS  Google Scholar 

  • Perozo, E., D.M. Cortes, and L.G. Cuello. 1998. Three-dimensional architecture and gating mechanism of a KC channel studied by EPR spectroscopy. Nat. Struct. Biol. 5:459–469.

    Google Scholar 

  • Perozo, E., L.G. Cuello, D.M. Cortes, Y.S. Liu, and P. Sompornpisut. 2002. EPR approaches to ion channel structure and function. Novartis Found Symp. 245:146–658; discussion 158–864, 165–168.

    Google Scholar 

  • Picollo, A., and M. Pusch. 2005. Chloride/;proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423.

    ADS  Google Scholar 

  • Pomès, R., and B. Roux. 1996. Structure and dynamics of a proton wire:Atheoretical study of HC translocation along the single-file water chain in the gramicidin a channel. Biophys. J. 71:19–39.

    Google Scholar 

  • Pomès, R., and B. Roux. 2002. Molecular mechanism of HC conduction in the single-file water chain of the gramicidin channel. Biophys. J. 82:2304–2316.

    Google Scholar 

  • Posson, D.J., P. Ge, C. Miller, F. Bezanilla, and P.R. Selvin. 2005. Small vertical movement of a KC channel voltage sensor measured with luminescence energy transfer. Nature 436:848–851.

    ADS  Google Scholar 

  • Pusch, M., U. Ludewig, A. Rehfeldt, and T.J. Jentsch. 1995. Gating of the voltagedependent chloride channel CLC-0 by the permeant anion. Nature 373:527–531.

    ADS  Google Scholar 

  • Raftery, M.A., M.W. Hunkapiller, C.D. Strader, and L.E. Hood. 1980. Acetylcholine receptor: Complex of homologous subunits. Science 208:1454–1456.

    ADS  Google Scholar 

  • Revell Phillips, L., M. Milescu, Y. Li-Smerin, J.A. Mindell, J.I. Kim, and K.J. Swartz. 2005. Voltage-sensor activation with a tarantula toxin as cargo. 436:857–860.

    Google Scholar 

  • Sakmann, B., C. Methfessel, M. Mishina, T. Takahashi, T. Takai, M. Kurasaki, K. Fukuda, and S. Numa. 1985. Role of acetylcholine receptor subunits in gating of the channel. Nature 318:538–543.

    ADS  Google Scholar 

  • Salom, D., M.C. Bano, L. Braco, and C. Abad. 1995. HPLC demonstration that an all Trp-Phe replacement in gramicidin A results in a conformational rearrangement from beta-helical monomer to double-stranded dimer in model membranes. Biochem. Biophys. Res. Commun. 209:466–473.

    Google Scholar 

  • Scheel, O., A.A. Zdebik, S. Lourdel, and T.J. Jentsch. 2005. Voltage-dependent electrogenic chloride/;proton exchange by endosomal CLC proteins. Nature 436:424–427.

    ADS  Google Scholar 

  • Schein, S.J., M. Colombini, and A. Finkelstein. 1976. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J. Membr. Biol. 30:99–120.

    Google Scholar 

  • Schoppa, N.E., K. McCormack, M.A. Tanouye, and F.J. Sigworth. 1992. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255:1712–1715.

    ADS  Google Scholar 

  • Schutz, C.N., and A. Warshel. 2001. What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins 44:400–417.

    Google Scholar 

  • Smith, B., and P. Agre. 1991. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 266:6407–6415.

    Google Scholar 

  • Sui, H., B.G. Han, J.K. Lee, P. Walian, and B.K. Jap. 2001. Structural basis of waterspecific transport through the AQP1 water channel. Nature 414:872–878.

    ADS  Google Scholar 

  • Tajkhorshid, T., P. Nollert, R.M. Stroud, and K. Schulten. 2002. Global orientational tuning controls selectivity of the AQP water channel family. Science 296:525–530.

    ADS  Google Scholar 

  • Takai, T., M. Noda, M. Mishina, S. Shimizu, Y. Furutani, T. Kayano, T. Ikeda, T. Kubo, H. Takahashi, T. Takahashi et al. 1985. Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 315:761–764.

    ADS  Google Scholar 

  • Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.

    Google Scholar 

  • Townsley, L.E., W.A. Tucker, S. Sham, and J.F. Hinton. 2001. Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry 40:11676–11686.

    Google Scholar 

  • Unwin, N. 1995. Acetylcholine receptor channel imaged in the open state. Nature 373:37–43.

    ADS  Google Scholar 

  • Unwin, N. 2005. Refined structure of the nicotinic acetylcholine receptor at 4 A resolution. J. Mol. Biol. 346:967–989.

    Google Scholar 

  • Urry, D.W. 1971. The gramicidin A transmembrane channel: A proposed p(L, D) helix. Proc. Natl. Acad. Sci. USA 68:672–676.

    ADS  Google Scholar 

  • Yang, J., P.T. Ellinor, W.A. Sather, J.F. Zhang, and R.W. Tsien. 1993. Molecular determinants of Ca2C selectivity and ion permeation in L-type Ca2C channels. Nature 366:158–161.

    ADS  Google Scholar 

  • Yang, J., Y.N. Jan, and L.Y. Jan. 1995. Control of rectification and permeation by residues in two distinct domains in an inward rectifier KC channel. Neuron 14:1047–1054.

    Google Scholar 

  • Yang, N., and R. Horn. 1995. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213–218.

    Google Scholar 

  • Yeh, J.Z., and C.M. Armstrong. 1978. Immobilisation of gating charge by a substance that simulates inactivation. Nature 273:387–389.

    ADS  Google Scholar 

  • Yellen, G., M.E. Jurman, T. Abramson, and R. MacKinnon. 1991. Mutations affecting internal TEA blockade identify the probable pore-forming region of a KC channel. Science 251:939–942.

    ADS  Google Scholar 

  • Zagotta, W.N., T. Hoshi, and R.W. Aldrich. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250:568–571.

    ADS  Google Scholar 

  • Zhou, Y., J.H. Morais-Cabral, A. Kaufman, and R. MacKinnon. 2001. Chemistry of ion coordination and hydration revealed by a KC channel-Fab complex at 2.0 A resolution. Nature 414:43–48.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Jordan, P.C. (2007). Ion Channels, from Fantasy to Fact in Fifty Years1 . In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_1

Download citation

Publish with us

Policies and ethics