Skip to main content

Plant Development in Microgravity

  • Chapter
Fundamentals of Space Biology

Part of the book series: THE SPACE TECHNOLOGY LIBRARY ((SPTL,volume 18))

Abstract

This chapter examines how the microgravity environment of spaceflight can affect plants. Results from studies of the mechanism of gravity perception and the role of microgravity in determining the development and growth of plants during various stages in their life cycle, at the organ, cellular, and subcellular level, are presented and discussed. The influence on plant development of other factors of spaceflight, such as the absence of 24-h cycles, changes in magnetic or electrical field, were reviewed in Fundamentals of Space Medicine (Clément 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aarrouf J, Perbal G (1996) The role of starch in the gravitropic response of the lentil root. Bot Acta 23: 278–284

    Google Scholar 

  • Aarrouf J, Schoevaert D, Maldiney R, Perbal G (1999) Changes in hormonal balance and meristematic activity in primary root tips on the slowly rotating clinostat and their effect on the development of the rapeseed root system. Physiol Plant 105: 708–718

    Google Scholar 

  • Baluska F, Kubica S, Hauskrecht M (1990) Postmitotic “isodiametric” cell growth in the maize root apex. Planta 181: 269–274

    Google Scholar 

  • Baluska F, Hasenstein KH (1997) Root cytoskeleton: its role in perception of and response to gravity. Planta 203 (Suppl): S69–78

    Google Scholar 

  • Barlow PW (1995) Gravity perception in plants: A multiplicity of systems derived by evolution? Plant Cell Environ 18: 951–962

    Google Scholar 

  • Barlow PW, Rathfelder EL (1985) Distribution and redistribution of extension growth along vertical and horizontal gravireacting maize roots. Planta 165: 134–141

    Google Scholar 

  • Behrens HM, Gradmann D, Sievers A (1985) Membrane-potential responses following gravistimulation in roots of Lepidium sativum. Planta 163: 463–472

    Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jiirgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602

    Google Scholar 

  • Bjorkman T, Cleland RE (1991) The role of extracellular free-calcium gradients in gravitropic signaling in maize roots. Planta 185: 379–384

    Google Scholar 

  • Blancaflor EB, Fasano JM, Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116: 213–222

    Google Scholar 

  • Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133: 1677–1690

    Google Scholar 

  • Blilou I, Xu J, Wilwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitor network controls growth and patterning in Arabidopsis roots. Nature 433: 39–44

    Google Scholar 

  • Boonsirichai K, Guan C, Chen R, Masson PH (2002) Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu Rev Plant Biol 53: 421–447

    Google Scholar 

  • Bowman JL, Eshed Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends in Genetics 18: 134–141

    Google Scholar 

  • Buchen B, Braun M, Hejnowicz Z, Sievers A (1993) Statoliths pull on microfilaments. Experiments under microgravity. Protoplasma 172: 38–42

    Google Scholar 

  • Byrne ME (2005) Network in leaf development. Curr Opin Plant Biol 8: 59–66

    Google Scholar 

  • Byrne ME, Kidner CA, Martienssen RA (2003) Plant stem cells: Divergent pathways and common themes in shoots and roots. Curr Opin Gen Dev 13: 551–557

    Google Scholar 

  • Caspar T, Pickard B (1989) Gravitropism in a starchles mutant of Arabidopsis. Planta 177: 185–197

    Google Scholar 

  • Castellano MM, Sablowski R (2005) Inter cellular signalling in the transition from stem cells to organogenesis in meristems. Curr Opin Plant Biol 8: 26–31

    Google Scholar 

  • Chapman DK, Johnsson A, Karlsson C, Brown A, Heathcote D (1994) Gravitropically-stimulated seedlings show autotropism in weightlessness. Physiol Plant 90: 157–162

    Google Scholar 

  • Claasen DE, Spooner BS (1994) Impact of altered gravity on aspects of cell biology. Int RevCytol 156: 301–373

    Google Scholar 

  • Clement G (2005) Fundamentals of Space Medicine. Springer, Dordrecht

    Google Scholar 

  • Ceilings DA, Zsuppan G, Allen NS, Blancaflor EB (2001) Demonstration of prominent actin filaments in the root columella. Planta 212: 392–403

    Google Scholar 

  • Cosgrove DJ (1997) Cellular mechanism underlying growth asymmetry during stem gravitropism. Planta 203 (Supp): S130–135

    Google Scholar 

  • Cowles JR, Scheld HW, Lemay R, Peterson C (1984) Growth and lignification in seedlings exposed to eight days of microgravity. Ann Bot 54 (Suppl 3): 33–48

    Google Scholar 

  • Darbelley N, Perbal P, Perbal G (1986) Which cells respond to gravistimulus in the lentil root? Physiol Plant 3: 460–464

    Google Scholar 

  • Darbelley N, Driss-Ecole D, Perbal G (1989) Elongation and mitotic activity of cortical cells in lentil roots grown in microgravity. Plant Physiol Biochem 27: 341–347

    Google Scholar 

  • Driss-Ecole D, Cottignies A, Jeune B, Corbineau F, Perbal G (1994) Increased mass production of Veronica arvensis grown on a slowly rotating clinostat. Environ Exp Bot 34: 303–310

    Google Scholar 

  • Driss-Ecole D, Jeune B, Prouteau M, Julianus P, Perbal G (2000a) Lentil root statoliths reach a stable state in microgravity. Planta 211: 396–405

    Google Scholar 

  • Driss-Ecole D, Lefranc A, Perbal G (2003) A polarized cell: The root statocyte. Physiol Plant 118: 305–312

    Google Scholar 

  • Driss-Ecole D, Schoëvaërt D, Noin M, Perbal G (1994) Densitometric analysis of nuclear DNA content in lentil roots grown in space. Biol Cell 81: 59–64

    Google Scholar 

  • Driss-Ecole D, Vassy J, Rembur J, Guivarc'h A, Prouteau M, Dewitte W, Perbal G (2000) Immunolocalization of actin in root statocytes of Lens culinaris. J Exp Bot 51: 521–528.

    Google Scholar 

  • Evans ML (1991) Gravitropism: interaction of sensitivity modulation and effector redistribution. Plant Physiol 95: 1–5

    Google Scholar 

  • Evans ML, Moore R, Hasenstein KH (1986) How roots respond to gravity. Sci Am 255: 112–119

    Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13: 907–921

    Google Scholar 

  • Fasano JM, Massa GD, Gilroy S (2002) Ionic signaling in plant responses to gravity and touch. J Plant Growth Regul 21: 71–88

    Google Scholar 

  • Firn R, Wagstaff C, Digby J (1999) The ups and downs of gravitropism. Trends Plant Sci 4: 252

    Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806–809.

    Google Scholar 

  • Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14: 425–430

    Google Scholar 

  • Goswami KKA, Audus LJ (1976) Distribution of calcium, potassium and phosphorus in Helianthus annuus hypocotyls and Zea mays coleoptiles in relation to tropic stimuli and curvature. Ann Bot 40: 49–64

    Google Scholar 

  • Gross-Hardt R, Laux T (2003) Stem cell regulation in the shoot meristem. J Cell Sci 116: 1659–1666

    Google Scholar 

  • Halstead TW, Dutcher FR (1987) Plant in space. Annu Rev Plant Physiol 38: 317–345

    Google Scholar 

  • Hejnowicz Z, Sondag C, Alt W, Sievers A (1998) Temporal course of graviperception in intermittently stimulated cress roots. Plant Cell Environ 21: 1293–1300

    Google Scholar 

  • Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational inductio of reaction wood in Poplar and Pine. Plant Physiol 135: 212–220

    Google Scholar 

  • Hilaire E, Paulsen AQ, Brown CS, Guikema JA (1995) Effects of clinorotation and microgravity on sweet clover columella cells treated with cytochalasin D. Physiol Plant 95: 267–273

    Google Scholar 

  • Hilaire E, Paulsen AQ, Brown CS, Guikema JA (1995) Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells. Plant Cell Physiol 36: 831–837

    Google Scholar 

  • Hilaire E, Peterson BV, Guikema JA, Brown CS (1996) Clinorotation affects morphology and ethylene production in soybean seedlings. Plant Cell Physiol 37: 929–934

    Google Scholar 

  • Hoson T (1994) Automorphogenesis of maize roots under stimulated microgravity conditions. Plant Soil 165: 309–314

    Google Scholar 

  • Hoson T, Nishitani K, Miyamoto K, Ueda J, Kamisaka S, Yamamoto R, Masuda Y (1996) Effects of hypergravity on growth and cell wall properties of cress hypocotyls. J Exp Bot 47: 513–517

    Google Scholar 

  • Hoson T, Soga K (1993) New aspects of gravity responses in plant cells. Int Rev Cytol 229: 209–244

    Google Scholar 

  • Hoson T, Soga K, Mori R, Saiki M, Nakamura Y, Wakabayashi K, Kamisaka S (2002) Stimulation of elongation and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol 43: 1067–1071

    Google Scholar 

  • Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S, Blancaflor EB (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39: 113–125

    Google Scholar 

  • Inzé D (2005) Green light for the cell cycle. EMBO J 24: 657–662

    Google Scholar 

  • Ishikawa H, Evans ML (1993) The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol 102: 1203–1210

    Google Scholar 

  • Ishikawa H, Evans ML (1995) Specialized zones of development in roots. Plant Physiol 109: 725–727

    Google Scholar 

  • Iversen T-H, Johnsson A, Skagen EB, Oedegaard E, Beisvag T, Chinga G, Andreassen P, Wold AB, Kittang A-I, Hammervold A, Rasmussen O (1999) Effect of a microgravity environment and influences of variations in gravity on the regeneration of rapeseed plant protoplasts flown on the S/;MM03 Mission. In: Biorack on SpaceHab. M Perry (ed) ESA Publication Division, Noordwijk, The Netherlands, pp 103–118

    Google Scholar 

  • Iversen T-H, Larsen P (1971) The starch statolith hypothesis and the optimal angle of geotropic stimulation. Physiol Plant 25: 23–27

    Google Scholar 

  • Johannes E, Collings DA, Rink JC, Allen NS (2001) Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes. Plant Physiol 127: 119–130.

    Google Scholar 

  • Johnsson A (1997) Circumnutations: Results from recent experiments on Earth and in space. Planta 203 (Suppl.): S147–158

    Google Scholar 

  • Johnsson A, Karlsson C, Iversen T-H, Chapman DK (1996) Random root movements in weightlessness. Physiol Plant 96: 169–178

    Google Scholar 

  • Johnsson A, Brown AH, Chapman DK, Heathcote D, Karlsson C (1995) Gravitropic responses of the Avena coleoptile in space and on clinostats. II. Is reciprocity rule valid? Physiol Plant 95: 34–38

    Google Scholar 

  • Juniper B, Groves S, Landau-Schachar B, Audus L (1966) Root cap and the perception of gravity. Nature 209: 315–319

    Google Scholar 

  • Kamada M, Fujii N, Aizawa S, Kamigaishi S, Mukai C, Shimazu T, Takahashi H (2000) Control of gravimorphogenesis by auxin: accumulation pattern of CS- IAA1 mRNA in cucumber seedlings grown in space and on the ground. Planta 211: 493–501

    Google Scholar 

  • Kiss JZ, Hertel R, Sack FD (1989) Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177: 198–206

    Google Scholar 

  • Kiss JZ, Katembe WJ, Edelmann RE (1998) Gravitropism and development of wild- type and starch-deficient mutants of Arabidopsis during spaceflight. Physiol Plant 102: 493–502

    Google Scholar 

  • Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch mutant of Arabidopsis. Physiol Plant 97: 237–244

    Google Scholar 

  • Kordyum E (1997) Biology of plant cells in microgravity and under clinostating. Int Rev Cytol 17: 1–78

    Google Scholar 

  • Krikorian AD (1996) Space stress and genome shock in developing plant cells. Physiol Plant 98: 901–908

    Google Scholar 

  • Krikorian AD (1998) Plants and somatic embryos in space: What we have learned? Gravit Space Biol Bull 11: 5–14

    Google Scholar 

  • Krikorian AD, Kann RP, Smith DL (1995) Somatic embryogenesis in daylily (Hemerocallis). In: Biotechnology in Agriculture and Forestry, YPS Bajaj (ed) Springer Verlag, Berlin, pp 285–293

    Google Scholar 

  • Krikorian DA, O'Connor SA (1984) Experiments on plant grown in space: Karyological observations. Ann Bot 54 (Suppl): 49–63

    Google Scholar 

  • Kuang A, Musgrave ME, Matthews SW (1996) Modification of reproductive development in Arabidopsis thaliana under spaceflight conditions. Planta 198: 588–594

    Google Scholar 

  • Kwon M, Bedgar DL, Piastuch W, Davin LB, Lewis NG (2001) Induced compression wood in Douglas fir (Pseudotsuga meziesii) in microgravity. Phytochemistry 57: 847–857

    Google Scholar 

  • Larsen P (1962) Orthogeotropism in roots. In: Encyclopedia of Plant Physiology, W Ruhland (ed) Springer, Berlin, pp 153–159

    Google Scholar 

  • Laux T (2003) The stem cell concept in plants: a matter of debate. Cell 113: 281–283

    Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1983) Gravity-induced polar transport of calcium across root tips of maize. Plant Physiol 73: 874–876

    Google Scholar 

  • Legué V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S (1997) Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol 114: 789–800

    Google Scholar 

  • Legué V, Driss-Ecole D, Perbal G (1992) Cell cycle and differentiation in lentil roots grown on a slowly rotating clinostat. Physiol Plant 84: 386–392

    Google Scholar 

  • Legué V, Yu F, Driss-Ecole D, Perbal G (1996) Effects of gravitropic stress on the development of the primary root of lentil seedlings grown in space. J Biotech 47: 129–136

    Google Scholar 

  • Leyser O (2003) regulation of shoot branching by auxin. Trends Plant Sci 11: 541–545

    Google Scholar 

  • Levine HG, Krikorian A (1996) Root growth in aseptically cultivated plantlets of Haplopappus gracilis after a five day spaceflight. J Gravit Physiol 3: 17–27

    Google Scholar 

  • Levinskikh MA, Sychev VN, Derendiaeva TA, Signalova OB, Salisbury LB, Campbell WF, Babenheim D (1999) The influence of space flight factors on the growth and development of super dwarf wheat cultivated in greenhouse Svet. Aviakosm Ekolog Med 33: 37–41

    Google Scholar 

  • Lorenzi G, Perbal G (1990) Actin filaments responsible for the location of the nucleus in the lentil statocyte are sensitive to gravity. Biol Cell 68: 259–263

    Google Scholar 

  • Marchant A et al. (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18: 2066–2073

    Google Scholar 

  • Masuda Y, Kamisaka S, Yamamoto R, Hoson T, Nishitani K (1994) Changes in rheological properties of the cell wall of plant seedlings under simulated microgravity conditions. Biorheology 31: 171–177

    Google Scholar 

  • Merkys AJ, Laurinavicius RS (1990) Plant growth in space. In: Fundamentals of Space Biology, M Ashima and GM Laurinavicius (eds) Springer-Verlag, Berlin, pp 69–83

    Google Scholar 

  • Monshausen GB, Sievers A (2002) Basipetal propagation of gravity-induced surface pH changes along primary roots of Lepidium sativum. Planta 215: 980–988

    Google Scholar 

  • Muday GK, Hay worth P (1994) Tomato root growth, gravitropism, and lateral root development: correlation with auxin transport. Plant Physiol Biochem 32: 193–203

    Google Scholar 

  • Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6: 535–542

    Google Scholar 

  • Mullen JL, Ishikawa H, Evans ML (1998) Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation. Planta 206: 598–603

    Google Scholar 

  • Mullen JL, Wolverton C, Ishikawa H, Evans ML (2000) Kinetics of constant gravitropic stimulus responses in Arabidopsis roots using a feedback system. Plant Physiol 123: 665–670

    Google Scholar 

  • Musgrave ME, Kuang A, Porterfield DM (1997) Plant reproduction in spaceflight environments. Gravit Space Biol Bull 10: 83–90

    Google Scholar 

  • Musgrave ME, Kuang A, Xiao Y, Stout SC, Bingham GE, Briaty LG, Levinskikh MA, Sichev VN, Podolski IG (2000) Gravity independence of seed-to-seed cycling in Brassica rapa. Planta 210: 400–406

    Google Scholar 

  • Nedukha EM (1996) Possible mechanisms of plant cell wall changes at microgravity. Adv Space Res 17: 37–45

    Google Scholar 

  • Noh B, Bandyopadhyay A, Peer WA, Spalding EP, Murphy AS (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423: 999–1002

    Google Scholar 

  • Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc NY Natl Acad Sci 100: 2987–2991

    Google Scholar 

  • Paul AL, Daugherty CJ, Bihn EA, Chapman DK, Norwood KL, Ferl RJ (2001) Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in Arabidopsis. Plant Physiol 126: 613–621

    Google Scholar 

  • Paul AL, Ferl RJ (2002) Molecular aspects of stress-gene regulation during spaceflight. J Plant Growth Regul 21: 166–176

    Google Scholar 

  • Perbal G (1999) Gravisensing in roots. Adv Space Res 24: 723–729

    Google Scholar 

  • Perbal G, Driss-Ecole D (1989) Polarity of statocytes in lentil seedling roots grown in space (Spacelab Dl Mission). Physiol Plant 75: 518–524

    Google Scholar 

  • Perbal G, Driss-Ecole D (1994) Sensitivity to gravistimulus of lentil seedling roots grown in space during the IML-1 Mission of Spacelab. Physiol Plant 90: 313–318

    Google Scholar 

  • Perbal G, Driss-Ecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8: 498–504

    Google Scholar 

  • Perbal G, Driss-Ecole D, Rutin J, Salle G (1987) Graviperception of lentil seedling roots grown in space (Spacelab Dl Mission). Physiol Plant 70: 119–126

    Google Scholar 

  • Perbal G, Driss-Ecole D, Tewinkel M, Volkmann D (1997) Statocyte polarity and gravisensitivity in seedling roots grown in microgravity. Planta 203 (Suppl): S57–62

    Google Scholar 

  • Perbal G, Jeune B, Lefranc A, Carnero-Diaz E, Driss-Ecole D (2002) The dose- response curve of the gravitropic reaction: a re-analysis. Physiol Plant 114: 336–342

    Google Scholar 

  • Perbal G, Julianus P, Driss-Ecole D (1999) Gravisensitivity of lentil seedling roots grown in space. In: Biorack on SpaceHab, M Perry (ed) ESA Publication Division, Noordwijk, The Netherlands, pp 251–252

    Google Scholar 

  • Perbal G, Lefranc A, Jeune B, Driss-Ecole D (2004) Mechanotransduction in root gravity sensing cells. Physiol Plant 120: 303–311

    Google Scholar 

  • Perbal G, Perbal P (1976) La perception géotropique dans la coiffe des racines de lentille. Physiol Plant 37: 42–48.

    Google Scholar 

  • Perbal G, Riviere S (1980) Ultrastructure des cellules perceptrices de la gravité dans 1‘épicotyled’ Asparagus officinalis. Biol Cell 39: 91–98

    Google Scholar 

  • Pickard B, Ping Ding J (1992) Gravity sensing by higher plants. Adv Comp Environ Physiol 10: 81–110

    Google Scholar 

  • Pickard B (1973) Geotropic response patterns of the Avena coleoptile. I. Dependence on angle and duration of stimulation. Can J Bot 51: 1003–1021

    Google Scholar 

  • Pilet P-E (1976) Effects of gravity on the growth inhibitors of geostimulated roots of Zea mays. Planta 131: 91–93

    Google Scholar 

  • Pilet P-E, Elliott MC (1981) Some aspects of the control of root growth and georeaction: the involvement of indoleacetic acid and abscisic acid. Plant Physiol 67: 1047–1050

    Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the Earth's gravitational field induces cytosolic calcium transients. Plant Physiol 129: 786–796

    Google Scholar 

  • Porterfield DM (2002) The biophysical limitations i physiological transport and exchange in plants grown in microgravity. J Plant Growth Regul 21: 177–190

    Google Scholar 

  • Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122: 481–490

    Google Scholar 

  • Rasmussen O, Klimchuk DA, Kordyum EL, Danevich LA, Tarnavskaya EB, Lozovaya VV, Tairbekov MG, Baggerud C, Iversen T-H (1992) The effect of exposure to microgravity on the development and structural organization of plant protoplasts flown on Biokosmos 9. Physiol Plant 84: 162–170

    Google Scholar 

  • Rasmussen OS, Baggerud C, Larssen HC, Evjen K, Iversen TH (1994) The effect of 8 days of microgravity on regeneration of intact plants from protoplasts. Physiol Plant 92: 404–411

    Google Scholar 

  • Rosen E, Chen R, Masson PH (1999) Root gravitropism: a complex response to a simple stimulus? Trends Plant Sci 4: 407–412

    Google Scholar 

  • Sack FD (1991) Plant gravity sensing. Int Rev Cytol 127: 193–252

    Google Scholar 

  • Sack FD (1997) Plastids and gravitropic sensing. Planta 203 (Suppl): S63–S68

    Google Scholar 

  • Schwuchow JM, Kern VD, Sack FD (2002a) Tip-growing cells of the moss Ceratodon purpureus are gravitropic in high-density media. Plant Physiol 130: 2095–2100

    Google Scholar 

  • Schwuchow JM, Kern VD, White NJ, Sack FD (2002b) Conservation of the plastid sedimentation zone in all moss genera with known gravitropic protonemata. J Plant Growth Regul 21: 146–155

    Google Scholar 

  • Schulze A, Jensen PJ, Desrosiers M, Buta JG, Bandurski RS (1992) Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity. Plant Physiol 100: 692–698

    Google Scholar 

  • Scott AC, Allen NS (1999) Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. Plant Physiol 121: 1291–1298

    Google Scholar 

  • Scurfield G (1979) Reaction wood: its structure and function. Science 197: 647–655

    Google Scholar 

  • Selker JML, Sievers A (1987) Analysis of extension and curvature during graviresponse in Lepidium roots. Am J Bot 74: 1863–1871

    Google Scholar 

  • Shaw S, Wilkins MB (1973) The source and lateral transport of growth inhibitors in geotropically stimulated roots of Zea mays and Pisum sativum. Planta 109: 11–26

    Google Scholar 

  • Shen-Miller J, Hinchman R, Gordon SA (1968) Threshold for georesponse to acceleration in gravity-compensated Avena seedlings. Plant Physiol 43: 338–344

    Google Scholar 

  • Sievers A, Braun M (1996) The root cap: structure and function. In: Plant Roots, the Hidden Half. Y Waisel, A Eshel, V Kafkaki (eds) Marcel Dekker Inc, New York, pp 31–49

    Google Scholar 

  • Sievers A, Buchen B, Hodick D (1996) Gravity sensing in tip-growing cells. Trends Plant Sci 1: 273–279

    Google Scholar 

  • Sievers A, Heyder-Caspers L (1983) The effect of centrifugal accelerations on the polarity of statocytes and on the graviperception of cress roots. Planta 157: 64–70

    Google Scholar 

  • Sievers A, Volkmann D (1972) Verursacht differentieller Druck der Amyloplasten auf ein komplexes Endomembran-system die Geoperzeption in Wurzeln. Planta 102: 160–172

    Google Scholar 

  • Sinclair W, Trewavas AJ (1997) Calcium in gravitropism. A re-examination. Planta 203 (Suppl): S85–S90

    Google Scholar 

  • Slocum RD, Roux SJ (1983) Cellular and subcellular localization of calcium in gravistimulated oat coleoptiles and its possible significance in the establishment of tropic curvature. Planta 157: 481–492

    Google Scholar 

  • Smith JD, Todd P, Staehelin LA (1997) Modulation of statolith mass and grouping in white clover (Trifolium repens) growth in 1-g, microgravity and on the clinostat. Plant J 12: 1361–1373

    Google Scholar 

  • Soga K., Harada K., Wakabayashi K., Hoson T., Kamisaka S (1999) Increased molecular mass of hemicellulose polysaccharides is involved in growth inhibition of maize coleoptiles and mesocotyls under hypergravity conditions. J Plant Res 112: 273–278

    Google Scholar 

  • Soga K, Wakabayashi K, Hoson T, Kamisaka S (2001) Gravitational force regulates elongation growth of Arabidopsis hypocotyls by modifying xyloglucan metabolism. Adv Space Res 27: 1011–1016

    Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2002) Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space. Planta 215: 1040–1046

    Google Scholar 

  • Stankovic B, Volkmann D, Sack FD (1998a) Autotropism, automorpho-genesis, and gravity. Physiol Plant 102: 328–335

    Google Scholar 

  • Stankovic B, Volkmann D, Sack FD (1998b) Autonomic straightening after gravitropic curvature of cress roots. Plant Physiol 117: 893–900

    Google Scholar 

  • Theimer RR, Kudielka RA, Rosch I (1986) Induction of somatic embryogenesis in Anise in microgravity. Naturwissenschaften 73: 442–443

    Google Scholar 

  • Timell TE (1986) Compression Wood in Gymnosperms. Vol 2. Springer, Heidelberg, pp 983–1262

    Google Scholar 

  • Volkmann D, Baluska F, Lichtscheidl I, Driss-Ecole D, Perbal G (1999) Statoliths motions in gravity-perceiving plant cells: Does actomyosincounteract gravity? FASEB J 13 (Suppl): S143–S147

    Google Scholar 

  • Volkmann D, Behrens HM, Sievers A (1986) Development and gravity sensing of cress roots under microgravity. Naturwissenschaften 73: 438–441

    Google Scholar 

  • Volkmann D, Buchen B, Hejnowicz Z, Tewinkel M, Sievers A (1991) Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets. Planta 185: 153–161

    Google Scholar 

  • Volkmann D, Sievers A (1979) Graviperception in multicellular organs. In:Physiology of Movement. W Haupt, ME Feinleib (eds) Springer, Berlin, pp 573–600

    Google Scholar 

  • Volkmann D, Tewinkel M (1996a) Gravisensitivity of cress roots: investigations of threshold values under specific conditions of sensor physiology in microgravity. Plant Cell Environ 19: 1195–1202

    Google Scholar 

  • Volkmann D, Tewinkel M (1996b) Graviresponse of cress roots under varying gravitational forces. J Biotechnol 47: 253–259

    Google Scholar 

  • Waldron KW, Brett CT (1990) Effects of extreme acceleration on the germination, growth and cell wall composition of pea epicotyls. J Exp Bot 41: 71–77

    Google Scholar 

  • Wayne R, Staves MP, Leopold AC (1992) The contribution of the extracellular matrix to gravisensing in characean cells. J Cell Sci 101: 611–623

    Google Scholar 

  • Wendt M, Kuo-Huang LL, Sievers A (1987) Gravitropic bending of cress roots without contact between amyloplasts and complexes of endoplasmic reticulum. Planta 172: 321–329

    Google Scholar 

  • Wilson BF, Archer RR (1981) Apical control of branch movements in white pine: Biological aspects. Plant Physiol 68: 1285–1288

    Google Scholar 

  • White RG, Sack FD (1990) Actin microfilaments in presumptive statocytes of root caps and coleoptiles. Am J Bot 77: 17–26

    Google Scholar 

  • Wolverton C, Mullen JL, Ishikawa H, Evans ML (2002) Root gravitropism in response to a signal originating outside of the cap. Planta 215: 153–157

    Google Scholar 

  • Wyatt SE, Rashotte AM, Shipp MJ, Robertson D, Muday GK (2002) Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/;or signal transduction of gravitropic stimuli. Plant Physiol 130: 1426–1435

    Google Scholar 

  • Yamamoto K, Kiss JZ (2002) Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis. Plant Physiol 128: 669–681

    Google Scholar 

  • Yu F, Driss-Ecole D, Rembur J, Legue V, Perbal G (1999) Effect of microgravity on the cell cycle in the lentil root. Physiol Plant 105: 171–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Perbal, G. (2006). Plant Development in Microgravity. In: Clément, G., Slenzka, K. (eds) Fundamentals of Space Biology. THE SPACE TECHNOLOGY LIBRARY, vol 18. Springer, New York, NY. https://doi.org/10.1007/0-387-37940-1_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-37940-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33113-3

  • Online ISBN: 978-0-387-37940-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics